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The resource-constrained problem seeks to find the optimal sequence that minimizes project duration under
current precedence constraints and resource limitations. This study integrates the fuzzy c-means clustering
technique and the chaotic technique into the Differential Evolution (DE) algorithm to develop the Fuzzy
Clustering Chaotic-based Differential Evolution (FCDE) algorithm, an innovative approach to solving complex
optimization problems. Within the FCDE, the chaotic technique prevents the optimization algorithm from
premature convergence and the fuzzy c-means clustering technique acts as several multi-parent crossover
operators in order to utilize population information efficiently and enhance convergence efficiency. Further,
this study applies a serial method to reflect individual-user priorities into the active schedule and the project
duration calculations. The FCDE and serial method are then integrated into a novel optimization model called
the Fuzzy Clustering Chaotic-based Differential Evolution for Solving Resource Constrained Project Scheduling
Problem (FCDE-RCPSP). Experiments run indicate that the proposed FCDE-RCPSP obtains optimal results more
reliably and efficiently than the benchmark algorithms considered. The FCDE-RCPSP is a promising alternative
approach to handling resource-constrained project scheduling problems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Project scheduling is an important tool for managing today's
complex business and manufacturing systems. Resource-constrained
project scheduling is a key challenge for many industrial problems [1].
Project managers widely use the Critical Path Method (CPM) and the
Program Evaluation and Review Technique (PERT) to generate sched-
ules that are used in planning and managing large-scale construction
projects. These two approaches involve logical dependencies because
they assume infinite resource availability. However, assuming infinite
resource availability is not reasonable for most real-world construction
projects [2].

Using Evolutionary Algorithms (EAs) to analyze resource-constrained
problems has attracted increasing attention in recent years [3]. Inspired
by the process of natural evolution, EAs have been used successfully to
resolve optimization problems in diverse fields [4]. Genetic Algorithms
(GAs) are an evolutionary approach used widely to solve the RCPSP
[5–7]. The GA searches for the optima in multiple chromosome gen-
erations that represent schedules reproduced by crossover andmutation.
The internal updating mechanism of chromosomes enables GA to search

for the global optima. However, deficiencies in GA performance such as
premature convergence and slow convergence have been identified.
Particle Swarm Optimization (PSO), an algorithm that simulates bird
flocking behavior, has been applied to solve resource-constrained
problems [2,8]. Like GA, PSO first initializes a population of random
solutions and then updates generations to search for the optima. PSO
advantages overGA include relative ease of implementation, faster search
process, and more effective performance [9]. Nevertheless, similar to
other stochastic search methods, PSO may become trapped in a local
minimum and thus may resolve upon a local rather than a global
minimum.

The Differential Evolution (DE) [10,11] algorithm is an evolutionary
computation technique. DE has drawn increasing interest from
researchers, who have explored the capabilities of this algorithm in a
wide range of problems. DE is an effective population-based stochastic
search engine for global optimization in the continuous domain. DE
uses mutation operators, crossover operators, and selection operators
at each generation to move its population toward the global optimum.
The superior performance of DE over competing algorithms has been
verified in many reported research works [10,12,13].

Despite the aforementioned advantages, DE in both its original form
and many later variants has several drawbacks. DE does not guarantee
convergence to the global optimum. It is easily trapped into the local
optima, resulting in low optimization precision or even failure [14].
Further, because a population may not be distributed over the search
space, individuals may be trapped in a local solution. Therefore, DE
may require more generations to converge toward the optimal or
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near-optimal solution [15]. DE is also subject to various weaknesses,
especially if the global optimum is identified in a small number offitness
evaluations. Moreover, although DE is good at exploring the search
space and locating the region of the global minimum, it is slow at
exploiting the solution [16].

The inherent characteristics of chaotic systems provide an efficient
approach to maintaining search algorithm population diversity. Chaos
is defined as behavior that is apparently unpredictable and random as
exhibited by a deterministic nonlinear system under deterministic
conditions. Chaotic systems that are sensitive to small differences in
initial system conditions may produce large variances in outcomes.
This is a property of instability sometimes referred to as the butterfly
effect or Liapunove's sense [17]. Some studies have focused on
hybridizing DE with a chaotic algorithm. For example, Jia et al. [14]
used a chaotic local search (CLS) with a ‘shrinking’ strategy. The CLS
improves the optimizing performance of the canonical DE by exploring
a huge search space in the early run phase to avoid premature
convergence and exploiting a small region in the late-run phase to
refine the final solutions. Bedri Ozer [15] embedded seven chaotic
maps to create the initial population of the DE algorithm. Findings of
these studies indicate that coupling emergent results in different areas
such as those of DE and complex dynamics may improve the quality
of results in some optimization problems.

Fuzzy c-means clustering is a soft clustering approach that divides a
set of objects into groups or clusters of similarities to accelerate the
optimization search in DE. Successful clustering identifies the true
natural groupings in the dataset. Fuzzy c-means clustering helps track
the evolution of the search algorithm in DE through cluster centers
introduced into the populations. In fuzzy clustering, data elements
may belong to more than one cluster, with a set of membership levels
associated with each element. Membership levels indicate the strength
of the association between a data element and a particular cluster.
Kwedlo [18] proposed a new version of DE that uses k-means clustering
to fine-tune each candidate solution obtained by DE mutation and
crossover operators. Wang et al. [19] utilized a clustering technique to
improve solution accuracy with less computational effort. Experiments
indicate that the new method is able to find near-optimal solutions
efficiently.

Hybridization using other algorithms is an interesting direction to
further improve DE [20]. Although many methods have been proposed
to improve DE, few researchers have studied DE hybridization with
clustering techniques and chaotic techniques [20]. An extensive review
of the literature done for this study found that fuzzy c-means clustering
and chaotic techniques have not yet been used to enhance the per-
formance of DE.

This study uses a hybridization strategy to improve the DE
optimizer. This hybridization strategy incorporates the fuzzy c-means
clustering technique and the chaotic technique to overcome perfor-
mance problems inherent to the original DE. Chaotic sequences adopted
instead of random sequences, with good results exploited to prevent
premature convergence. Further, fuzzy c-means clustering introduces
multi-parent crossover operators to population information in order
to accelerate algorithm convergence. The remainder of this paper is
organized as follows: Section 2 provides a brief overview of the
literature related to the new optimization model; Sections 3 and 4
provide a detailed description of the new model; Section 5 dem-
onstrates the performance of the new model using numerical exper-
iments and result comparisons; and Section 6 discusses findings and
presents conclusions.

2. Literature review

2.1. Formulating the resource-constrained project scheduling problem

In construction management, resource constrained problems are
investigated intensively because of their practical importance. Resource

constraint problems address both precedence and resource constraints
and are significantly more difficult to resolve than other scheduling
problems. Minimizing project duration is the primary objective of
the RCPSP [2,8]. Other objectives include minimizing total project
cost and leveling resource usage [21–23]. Resources involved in a
project may be single or multiple and may be renewable/recoverable
(e.g., personnel) or nonrenewable/non-recoverable (e.g., building
materials). Preemption means that activities in progress (e.g., frame
installing) may be interrupted. Non-preemption means that activities
(e.g., concreting) may not be interrupted once in progress. The classical
RCPSP that considers renewable resources, non-preemption and the
minimizing of project duration is formulated as follows:

min max f iji ¼ 1;2;…;Nf g ð1Þ

Subject to:

f j− f i≥di∀ j∈Pi; i ¼ 1;2;…;N ð2Þ

X
At
rik≤Rk ; k ¼ 1;2;…;K ; t ¼ s1; s2;…; sN ð3Þ

where N is the number of activities involved in a project and fi is the
finish time of activity i(i=1,…,N); di is the duration of activity i; Pi is
the set of activities that have been already scheduled (i.e., predecessors)
before activity imay be scheduled to start; Rk is the amount of resource
k(k=1,…,K) available and k is the number of the resource types; rik is
the amount of resource k required by activity i; and At is the set of
ongoing activities at t; and si = (fi − di) is the start time of activity i.
Eq. (1) represents the objective. Eqs. (2) and (3) represent precedence
constraints and resource constraints, respectively.

2.2. The DE optimization algorithm

Storn and Price first introduced the concept of Differential Evolution
(DE) [10,11] as an approach to real-parameter optimization. DE is based
on the utilization of a novel crossover-mutation operator, based on the
linear combination of three different individuals and one subject-to-
replacement parent (or target vector) [24]. The crossover-mutation
operator yields a trial vector (or child vector) that competes with its
parent in the selection operator. These two terms, trial vector and
child vector, are used interchangeably. The selection process is per-
formed via selection between the parent and the corresponding
offspring [25]. Fig. 1 depicts the standard algorithm of differential
evolution.

In this figure, NP represents the size of the population; Xj,i is the jth
decision variable of the ith individual in the population; g is the current
generation; and D is the number of decision variables. randj(0,1) is a
uniform random number lying between 0 and 1 and rnb(i) is a
randomly chosen index of {1,2,…,D}. Cr is the crossover constant
Cr∈[0,1] and F is a mutant factor F∈[0,2]. In the original DE algorithm,
a user must specify initial values for F and Cr, which are fixed values
during the optimization process. Price, et al. [11] suggested an initial
value of 0.5 for F and an initial value of 0.9 or 0.1 for Cr, depending on
specific problem characteristics.

2.3. Fuzzy c-means clustering

Clustering is a process that decomposes a given dataset into
distinctly defined subgroups or clusters. Clustering algorithms may be
divided into two main categories: crisp (or hard) clustering algorithms
assign each data point to exactly one cluster, while fuzzy clustering
algorithms associates each data point with every cluster based on a
specific algorithmic degree of membership [26]. Many clustering
algorithms have been introduced in the literature. Fuzzy clustering
deals efficiently with overlapping clusters and delivers results that are
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