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The implementation of a risk-informed assetmanagement systemby awastewater infrastructure utility requires
information regarding the probability and the consequences of component failures. This paper focuses on the
former, evaluating the performance of artificial intelligence tools, namely artificial neural networks (ANNs)
and support vector machines (SVMs), in predicting the structural condition of sewers. The performance of
these tools is compared with that of logistic regression on the case study of the wastewater infrastructures of
SANEST— Sistema de Saneamento da Costa do Estoril (Costa do Estoril Wastewater System). The uncertainty asso-
ciated to ANNs and SVMs is quantified and the results of a trial and error approach and the use of optimization
algorithms to develop SVMs are compared. The results highlight the need to account for both the performance
and the uncertainty in the process of choosing the best model to estimate the sewer condition, since the ANNs
present the highest average performance (78.5% correct predictions in the test sample) but also the highest
dispersion of performance results (73% to 81% correct predictions in the test sample), whereas the SVMs have
lower average performance (71.1% without optimization and 72.6% with the parameters optimized using the
Covariance Matrix Adaptation Evolution Strategy) but little variability.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

During the last decades there has been a trend to develop and imple-
ment formal assetmanagement systems forwastewater infrastructures.
These asset management systems have been gradually evolving from
reactive to proactive stances and their scope has broadened significantly
to the point of being considered the central element in the technical
management of water and wastewater infrastructures [1–6].

One of the first proactive-based asset management systemswas de-
veloped by the Water Research Centre, in which the defects observed
during Closed-Circuit Television (CCTV) inspections were rated in
order to obtain a classification for the sewer condition. Originally, the
approachwas used only tomanage the critical sewers, that is, managing
proactively the sewers that entail very high economic consequences in
case of failure, and reactively the remaining [7]. However, due to the
growing awareness of the non-economic dimension of sewer failures,
the application of this approachwas expanded to the non-critical assets
[8]. This approach has been implemented worldwide, with adjustments
introduced by national institutions and local municipalities [9,10].

More complex and comprehensivemodels were also developedwith
the purpose of optimizing decisions and prioritizing interventions, by
taking into account hydraulic, environmental, social and economic con-
strains (MARESS— [11]; RERAUVIS— [12]; CARE-S— [13]). Additionally,

there is a growing demand for conducting periodical sewer inspections
in order to complywith legal requirements (e.g., inGermany,most States
require the inspection of the total sewer network once in ten years). This
has led to the development of models for assisting decisions regarding
which sewers are to be inspected (AQUA-WertMin — [14]; SCRAPS —

[15–17]).
If there is the need to support rehabilitation or inspection decisions,

the models developed to predict interventions in sewer systems should
include amodule for estimating the evolution of the sewer condition [18].
Most of such models either require information that is not always avail-
able and is usually not easily obtained (e.g., soil aggressiveness) or are
based on statistical analysis. The traditional statistical models require
the previous knowledge of the function/structure that better represents
the effect of the different sewer characteristics (e.g., material, diameter,
age) on its performance. This is a major drawback because the effect of
the interactions between different sewer characteristics and how they
relate between them and with the sewer performance is not known
neither easy to determine (e.g. diameter and age interact as sum, a prod-
uct, a power, a logarithmor any othermathematical formulation). Conse-
quently, in most cases, the statistical models consider only one (usually
the age) or two of these characteristics (usually the age in combination
with one of the others). Artificial intelligence tools are an alternative
that can be used in classification and pattern identification problems
such as this (e.g. [19]). The present paper discusses the use of artificial
neural networks (ANNs) and support vector machines (SVMs) to esti-
mate the condition of sewers, being the results compared with those of
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logistic regression. The models were fitted using data from the periodic
CCTV inspection program that has been implemented in the SANEST —

Sistema de Saneamento da Costa do Estoril (Costa do Estoril Wastewater
System) since 2005.

2. Sewer condition modeling

2.1. Approaches

Depending on the type of output provided, themodels for determin-
ing sewer conditions can be classified as deterministic or stochastic
[20,21]. The former provide estimates in an absolute and exact format
while the latter comprise some form of uncertainty/variability quantifi-
cation associated with the estimate. The deterministic models are the
most common, but in a risk-informed context it is important to evaluate
the uncertainty of the estimates in order to determine the best options.
Themodels for predicting sewer conditions can be further classified into
empirical or mechanistic [20,21]. The empirical models use statistical
tools and methods to obtain relations between known variables and
the sewer condition based on historical records. These models entail
an implicit assumption that the pattern of deterioration will remain
the same in the future. The mechanistic models seek to represent the
physical, chemical and/or biological phenomena that take place within
the sewers and are relevant to explain their condition. These models re-
quire information and data that is not generally available or cannot be
easily obtained. There is another class of models (expert-basedmodels)
that rely on expert opinion to define the relation between the inputs
and the outputs. Historically, these models (e.g. MOSIMO — [22,23];
SCRAPS — [15–17]) have been less explored and are seldom put into
practice, although for situations of information scarcity they may be
the only viable option for estimating the sewer condition.

Empirical models are the most widely studied. These models, also
called statistical models, are built from statistical analyses of operation
and maintenance failure records (e.g., clogging; collapse) or condition
classification based on inspection data (e.g., operational or structural
condition classification using a rating protocol). Two main categories
of empirical models can be identified [19,24]: i) function-basedmodels;
and ii) data-based models. Both model categories rely on fitting
observed data. However, for function-based models the mathematical
expressions relating the inputs with the outputs are pre-defined at the
outset. In this case, the fitting operation seeks to determine the coeffi-
cients of the functions that minimize the error between the observed
and the estimated outputs. In the data-based models there is no pre-
defined expression relating the inputs with the outputs such that the
fitting operation simultaneously adjusts the relation between the inputs
and the outputs and the relative weight of each input. Table 1 resumes
the main classes and types of function-based and data-based models
that have been used for estimating sewer condition.

The references presented in Table 1 are specific to sewer systems.
There are also similar studies on water supply networks that use

alternative empirical models which could be adapted for sewer systems
(e.g., [55–58]).

The present paper focuses on the application of ANNs and SVMs,
which are machine learning techniques. These techniques have the
ability to learn the patterns of the underlying process from past data
and generalize the relationships between input and output data, being
able to predict or estimate an output given a new set of input variables
from the vicinity of the training domain. Some brief details on these
techniques are providednext, alongwith a reviewon logistic regression.

2.2. Logistic regression (LR)

The logistic regression (LR) is a type of generalized linearmodel that
extends the linear regression by linking the range of real numbers to the
0–1 range, allowing approaching situationswhere the response variable
is qualitative and takes on only two possible values [59]. LR assumes the
response to be a Bernoulli random variable and provides a prediction
of the chance that the response will assume one of the categorical
response levels [60]. Considering that the value 1 represents the
event of interest, the relation between the probability of it happening
(P[yk = 1]) and the predictors (xi) is given by a logistic model:

P yk ¼ 1½ � ¼ pk ¼
1

1−e
− βokþ

Xn
i¼1

βikxi

 ! ð1Þ

where pk is the probability that the kth case experiences the event of in-
terest;βik is the value of the ith regression coefficient of the kth case; xi is
the ith predictor; and n is the number of predictors. If pk ≥ 0.5 the case
falls into class 1, otherwise it falls into class 0. The model assumes that
the predictors are not highly correlated since, as in the linear regression,
this can cause problems with the estimation of the coefficients [61].
Nonetheless, LR is regarded to be robust even when the assumptions
are not fully met [62]. Usually, the coefficients βik are obtained using
the maximum likelihood estimates [63].

The logistic function provides a mean for mapping from the predic-
tor domain onto the [0, 1] interval [64]. Other commonly used function
is the normal probability distribution, resulting in the so called probit
regression model. Another alternative, the multinomial logistic regres-
sion, expands the LR for response variables with m N 2 classes. In this
case, there will bem − 1 complementary link functions.

2.3. Artificial neural networks (ANNs)

Since Warren S. McCulloch and Walter H. Pitts proposed the first
artificial model for a biological neuron of human brain in 1943, numer-
ous methods for building neuro-inspired computational models have
been proposed and investigated [65]. ANNs are defined not only by
their use of artificial neurons, but also by the network structure
connecting them. In addition, there are other important features to be

Table 1
Empirical models used for estimating the condition of sewers.

Category Class Type References

Function-based Deterministic Linear regression [25–27]
Non-linear regression [28,29]

Stochastic Survival function [14,24,30,31]
Ordinal regression [24,32–35]
Markov chains [19,28,29,36–40]
Semi-Markov chains [24,41,42]
Discriminant analysis [19,24]

Data-based Artificial intelligence Artificial neural networks — ANNs [19,24,43–45]
Fuzzy set [46–49]
Case based reasoning — CBR [50]
Support vector machines — SVMs [51]

Genetic programing Evolutionary polynomial regression — EPR [52–54]
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