Contents lists available at SciVerse ScienceDirect

### Veterinary Microbiology

journal homepage: www.elsevier.com/locate/vetmic

#### Research paper

# Multiple locus variable number tandem repeat analysis (MLVA) of the pathogenic intestinal spirochaete *Brachyspira pilosicoli*

#### Eugene Neo, Tom La, Nyree Dale Phillips, David J. Hampson\*

School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia

#### ARTICLE INFO

Article history: Received 8 October 2012 Received in revised form 19 December 2012 Accepted 20 December 2012

Keywords: Spirochaete Brachyspira pilosicoli MLVA Molecular epidemiology Zoonosis

#### ABSTRACT

Brachyspira pilosicoli is an anaerobic intestinal spirochaete that colonizes the large intestine of various host species, in which it may induce diarrhoea, poor growth rates and a localized colitis known as intestinal (or colonic) spirochaetosis. The spirochaete is considered to be potentially zoonotic. The purpose of the current study was to develop a multiple-locus variable number tandem repeat analysis (MLVA) method as a simple and rapid tool to investigate the molecular epidemiology of B. pilosicoli. The genomic sequence of B. pilosicoli strain 95/1000 was analyzed for potential tandem repeats using the default parameters of the Tandem Repeat Finder program. A total of 22 repeat loci were identified and tested for their presence and variability on a set of 10 B. pilosicoli isolates. Five loci that were present in most isolates and that showed evidence of allelic variation were selected and used with a collection of 119 isolates from different host species and geographical locations. Not all the isolates amplified at all loci, but using the available data a total of 103 VNTR profiles were generated. The discriminatory power of this method was 0.976. A phylogenetic tree constructed from the allelic profiles confirmed the diversity of *B. pilosicoli*, and the general lack of clustering of strains based on species of origin or geographic origin. Some isolates with known epidemiological links were found to be identical or highly similar. The MLVA method was simple and easy to use, and could readily differentiate between strains of B. pilosicoli. MLVA should prove to be a useful tool for rapid identification of relationships between B. pilosicoli isolates in epidemiological investigations.

© 2013 Elsevier B.V. All rights reserved.

#### 1. Introduction

The genus *Brachyspira* includes species of anaerobic spirochaetes that colonize the large intestine of animals and birds (Stanton, 2006). The two most important pathogenic species are *Brachyspira hyodysenteriae*, the agent of swine dysentery, and *Brachyspira pilosicoli*, the agent of intestinal spirochaetosis (Hampson, 2012). *B. pilosicoli* has a broader host range than *B. hyodysenteriae*, colonizing various species of animals and birds, as well as human beings (Hampson et al., 2006). Colonized individuals may develop focal colitis, with chronic

diarrhoea. Infections with *B. pilosicoli* are particularly common in intensively housed pigs and chickens, in which rates of growth and production may be depressed. Colonization also is common amongst humans living in crowded and unhygienic conditions (Trott et al., 1997a; Nelson et al., 2009). Spirochaetaemia with *B. pilosicoli* has been recorded in immunocompromised or debilitated human beings (Trott et al., 1997b), but not yet in animals. Transmission may be by direct exposure to infected faeces, or by indirect routes; for example, carcasses of spent hens in supermarkets may be contaminated with *B. pilosicoli* (Verlinden et al., 2012), while accessing drinking water from wells has been linked to transmission in humans (Margawani et al., 2004).

To help answer questions about transmission routes of *B. pilosicoli*, a simple, rapid and discriminating typing





<sup>\*</sup> Corresponding author. Tel.: +61 89360 2287; fax: +61 89310 4144. *E-mail address*: d.hampson@murdoch.edu.au (D.J. Hampson).

<sup>0378-1135/\$ -</sup> see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.vetmic.2012.12.030

Table 1 (Continued)

system that gives information about genetic relatedness of isolates is needed. Pulsed field gel electrophoresis has been used for this purpose (Atyeo et al., 1996), but it is quite time consuming and requires large quantities of pure DNA. Multiple-locus variable number tandem repeat analysis (MLVA) is a method that uses non-coding regions of genomic DNA, consisting of direct repeats of the same sequence of bases, referred to as tandem repeats. The number of repeats in the sequence is determined genetically and can vary between different strains. These regions are known as variable number tandem repeats (VNTR) loci. Recently, an MLVA scheme had been developed and used for *B. hyodysenteriae* (Hidalgo et al., 2010). The purpose of the current study was to develop an MLVA scheme for *B. pilosicoli*, and to use it as an epidemiological tool to compare isolates from different sources.

#### 2. Materials and methods

#### 2.1. Spirochaete isolates

A total of 119 *B. pilosicoli* isolates and strains recovered from different host species and geographical areas were obtained from the culture collection at the Reference Centre for Intestinal Spirochaetes at Murdoch University (Table 1). These consisted of 45 isolates from pigs, 42 from human beings, 25 from chickens, 5 from dogs, and 2 from

#### Table 1

Names of the 119 isolates, the host species from which they were isolated, location where they were isolated, their position in Fig. 1 and their VNTR profile.

| Strain name  | Position on | Species of origin | Location of            | VNTR    |
|--------------|-------------|-------------------|------------------------|---------|
| Strain name  | Figure 1    | species of origin | isolation <sup>a</sup> | profile |
| V1 H 106     | 1           | Human             | PNG (village 1)        | 70      |
| GP 6         | 2           | Pig               | PNG (piggery 1)        | 70      |
| MC F1        | 3           | Human             | Australia (WA)         | 75      |
| D17          | 4           | Dog               | Australia              | 16      |
| V1 H 11      | 5           | Human             | PNG (village 1)        | 65      |
| W7           | 6           | Pig               | Australia              | 51      |
| IMR 48       | 7           | Human             | PNG                    | 14      |
| Q98.0026.12  | 8           | Chicken           | Australia              | 15      |
| Q98.0027.36  | 9           | Chicken           | Australia              | 18      |
| V1 H 103     | 10          | Human             | PNG (village 1)        | 12      |
| 16242-94     | 11          | Dog               | USA                    | 82      |
| Q97.2224.3.1 | 12          | Chicken           | Australia              | 92      |
| IMR 2        | 13          | Human             | PNG                    | 73      |
| IMR 39       | 14          | Human             | PNG                    | 77      |
| 2152         | 15          | Horse             | Australia              | 102     |
| Q98.000.6.1  | 16          | Chicken           | Australia              | 56      |
| *H21         | 17          | Human             | Australia              | 61      |
| *OF 15       | 18          | Pig               | Australia              | 68      |
| Q98.0228.5.2 | 19          | Chicken           | Australia              | 95      |
| V1 H 126     | 20          | Human             | PNG (village 1)        | 80      |
| GP 24        | 21          | Pig               | PNG (piggery 1)        | 89      |
| HRM7         | 22          | Human             | Italy                  | 27      |
| *HRM7A       | 23          | Human             | Italy                  | 62      |
| GP 17        | 24          | Pig               | PNG (piggery 1)        | 81      |
| Q94.0354.0.6 | 25          | Chicken           | Australia              | 59      |
| GP 20        | 26          | Pig               | PNG (piggery 1)        | 76      |
| V1 H 116     | 27          | Human             | PNG (village 1)        | 6       |
| V1 D 1       | 28          | Dog               | PNG (village 1)        | 7       |
| 95/1000      | 29          | Pig               | Australia              | 88      |
| GP 28        | 30          | Pig               | PNG (piggery 1)        | 72      |
|              |             |                   |                        |         |

| Table 1 (Continu           | ied)     |                    |                             |          |
|----------------------------|----------|--------------------|-----------------------------|----------|
| GP 36                      | 31       | Pig                | PNG (piggery 1)             | 71       |
| Gap 418                    | 32       | Human              | Australia                   | 1        |
| V1 H 120                   | 33       | Human              | PNG (village 1)             | 8        |
| Q98.0228.5.7               | 34       | Chicken            | Australia                   | 74       |
| EM1                        | 35       | Human              | Australia (WA)              | 83       |
| H4-2                       | 36       | Human              | Australia                   | 83       |
| Gap 51.2                   | 37       | Human              | Australia                   | 83       |
| V1 H 141                   | 38       | Human              | PNG (village 1)             | 84       |
| SC1                        | 39       | Human              | Australia (WA)              | 63       |
| JF2                        | 40       | Human              | Australia (WA)              | 63       |
| B1                         | 41       | Human              | Australia (WA)              | 64       |
| IMR 81                     | 42       | Human              | PNG                         | 11       |
| NZ 91/31349                | 43       | Pig                | NZ                          | 87       |
| TH NF                      | 44<br>45 | Human<br>Chicken   | Australia (WA)<br>Australia | 3<br>38  |
| Q97.000.6.10<br>*K1        | 43<br>46 | Human              | Australia (WA)              | 58<br>66 |
| H43-2                      | 40<br>47 | Human              | Australia (WA)              | 67       |
| GP 32                      | 48       | Pig                | PNG (piggery 1)             | 9        |
| IMR49                      | 49       | Human              | PNG                         | 10       |
| *GP 14                     | 50       | Pig                | PNG (piggery 1)             | 5        |
| V1 H 12                    | 51       | Human              | PNG (village 1)             | 20       |
| *QF1                       | 52       | Human              | Australia (WA)              | 22       |
| N1                         | 53       | Human              | Australia (WA)              | 24       |
| Q96.1037.0                 | 54       | Chicken            | Australia                   | 45       |
| *WIA8                      | 56       | Pig                | Australia                   | 50       |
| WW25                       | 55       | Pig                | Australia                   | 46       |
| OF 11                      | 57       | Pig                | Australia                   | 39       |
| 89/1069                    | 58       | Pig                | Canada                      | 40       |
| *P43/6/78 <sup>T</sup>     | 59       | Pig                | UK                          | 29       |
| GP 49                      | 60       | Pig                | PNG                         | 35       |
| Q97.3008.4.2               | 61       | Chicken            | Australia                   | 37       |
| D9201243                   | 62       | Pig                | USA                         | 37       |
| *W015/C138<br>JJ1          | 63<br>64 | Pig<br>Human       | Australia<br>Australia (WA) | 44<br>25 |
| M1                         | 64<br>65 | Human              | Australia (WA)              | 23<br>36 |
| PWS/B                      | 66       | Pig                | UK                          | 26       |
| RV1                        | 67       | Human              | Australia (WA)              | 26       |
| HRM 4B                     | 68       | Human              | Italy                       | 26       |
| HRM 2B                     | 69       | Human              | Italy                       | 26       |
| L72                        | 70       | Pig                | Australia                   | 49       |
| GP 35                      | 70       | Pig                | PNG (piggery 1)             | 57       |
| Q98.0072.37                | 72       | Chicken            | Australia                   | 69       |
| WG6                        | 73       | Pig                | Australia                   | 30       |
| Q95.3281.0                 | 74       | Chicken            | Australia                   | 85       |
| GP 3                       | 75       | Pig                | PNG (piggery 1)             | 53       |
| Q98.0033.72                | 76       | Chicken            | Australia                   | 55       |
| WesB                       | 77       | Human              | Australia (WA)              | 54       |
| Q98.0072.08                | 78       | Chicken            | Australia                   | 54       |
| 89-2005A                   | 79       | Pig                | Canada                      | 60       |
| KP5                        | 80       | Pig                | Australia                   | 41       |
| KP1                        | 81       | Pig                | Australia                   | 90       |
| Q97.000.6.2                | 82       | Chicken            | Australia                   | 91       |
| 89-2005B<br>9803.1         | 83<br>84 | Pig<br>Pig         | Canada<br>Australia         | 13<br>21 |
| Meyers K-9                 | 85       | Dog                | USA                         | 94       |
| 12                         | 85       | Dog                | USA                         | 24       |
| WF1                        | 86       | Pig                | Australia                   | 58       |
| Q1588.5                    | 87       | Pig                | Australia                   | 32       |
| Q98.0028.3                 | 88       | Chicken            | Australia                   | 32       |
| Cof 10                     | 89       | Pig                | Australia                   | 34       |
| WG                         | 90       | Pig                | Australia                   | 34       |
| OF 2                       | 91<br>02 | Pig<br>Chieken     | Australia                   | 33       |
| Q98.0062.14<br>Q97.000.6.8 | 92<br>93 | Chicken<br>Chicken | Australia<br>Australia      | 47<br>48 |
| Q97.000.0.8                | 73       | Chicken            | Ausualla                    | 40       |

Download English Version:

## https://daneshyari.com/en/article/2466869

Download Persian Version:

https://daneshyari.com/article/2466869

Daneshyari.com