

ORIGINAL ARTICLE

Chinese Pharmaceutical Association Institute of Materia Medica, Chinese Academy of Medical Sciences

Acta Pharmaceutica Sinica B

www.elsevier.com/locate/apsb www.sciencedirect.com

Inhibition of tyrosinase activity and melanine pigmentation by 2-hydroxytyrosol

Ryuji Uchida^{a,b}, Seiko Ishikawa^a, Hiroshi Tomoda^{a,b,*}

^aGraduate School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan ^bSchool of Pharmacy, Kitasato University, Tokyo 108-8641, Japan

Received 28 October 2013; revised 11 December 2013; accepted 25 December 2013

KEY WORDS

2-Hydroxytyrosol; *Metarhizium* sp.; Tyrosinase inhibitor; Melanine formation; B16 melanoma cells **Abstract** 2-Hydroxytyrosol (2-HT), originally reported as a synthetic compound, was isolated for the first time as a fungal metabolite. 2-HT was found to inhibit mushroom tyrosinase with an IC₅₀ value of 13.0 μ mol/L. Furthermore, 2-HT dose-dependently inhibited tyrosinase activity (IC₅₀, 32.5 μ mol/L) in the cell-free extract of B16 melanoma cells and α -melanocyte stimulating hormone (α -MSH)-stimulated melanin formation in intact B16 melanoma cells.

© 2014 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license.

*Corresponding author.

E-mail address: tomodah@pharm.kitasato-u.ac.jp (Hiroshi Tomoda).

Peer review under responsibility of Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.

^{2211-3835 © 2014} Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license. http://dx.doi.org/10.1016/j.apsb.2013.12.008

1. Introduction

Melanin is essential for protecting human skin against radiation, but the accumulation of abnormal melanin induces pigmentation disorders, such as melasma, freckles, ephelides, and senile lentigines¹. Melanogenesis is conducted in melanocytes, located in the basal layer of the epidermis and controlled by tyrosinase².

Tyrosinase (EC 1.14.18.1), also known as polyphenol oxidase (PPO), is a copper-containing monooxygenase enzyme involved in melanogenesis³. The enzyme is widely distributed in fungi, higher plants and animals⁴, and is involved in the first two steps of the melanin biosynthesis, in which L-tyrosine is hydroxylated to 3,4dihydroxyphenylalanine (L-DOPA, monophenolase activity) and the latter is subsequently oxidated to dopaquinone (diphenolase activity)². A large number of moderate to potent tyrosinase inhibitors from natural and synthetic resources have been reported during the last decade⁵⁻⁹. Tyrosinase inhibitors such as arbutin, kojic acid and hydroquinones have been used as whitening or antihyperpigment agents because of their ability to suppress dermal-melanin production^{10,11}. However, arbutin and kojic acid hardly showed inhibitory activity against pigmentation in intact melanocytes or in a clinical trial¹², and hydroquinones are considered to be cytotoxic to melanocytes and potentially mutagenic to mammalian cells¹¹. Therefore, it remains necessary to search for new tyrosinase inhibitors without side effects.

During our course of screening for mushroom tyrosinase inhibitors of microbial origin, 2-hydroxytyrosol (2-HT, Fig. 1) was isolated from the fungal culture broth of *Metarhizium* sp. OB-0098. 2-HT was originally reported to be a synthetic compound¹³, but its biological activity has not been reported. In this study, tyrosinase inhibitory activities and melanin formation in mouse B16 melanoma cells of 2-HT were described.

2. Results

2.1. Inhibition of mushroom tyrosinase activity by 2-hydroxytyrosol

In this assay, the conversion of L-DOPA to dopaquinone by mushroom tyrosinase was observed at 450 nm. As shown in Fig. 2,

2-HT dose-dependently inhibited mushroom tyrosinase activity with an IC_{50} value of 13.0 μ mol/L. Under the same conditions, kojic acid also inhibited the activity with IC_{50} of 14.8 μ mol/L.

2.2. Inhibition of melanin pigmentation in B16 melanoma cells by 2-hydroxytyrosol

To investigate whether 2-HT inhibited melanogenesis, the effect of 2-HT on melanin pigmentation in intact B16 melanoma cells was studied. α -MSH was added to this assay system, because melanin production was markedly enhanced. 2-HT was found to inhibit the melanin pigmentation of B16 melanoma cells in a dose-dependent manner with IC₅₀ of 571 µmol/L (Fig. 3). Under the same conditions, arbutin inhibited the melanin pigmentation with IC₅₀ of 1130 µmol/L, and kojic acid inhibited it by 45.7% at 735 µmol/L. Furthermore, the cytotoxic effects of these inhibitors on B16 melanoma cells were investigated by the MTT assay. The IC₅₀ values of 2-HT, kojic acid and arbutin were 1.3, 3.0 and 1.8 mmol/L, respectively.

2.3. Inhibition of B16 cells tyrosinase activity by 2-hydroxytyrosol

To confirm the inhibition of melanin pigmentation in intact B16 melanoma cells by 2-HT, the effect of 2-HT on tyrosinase activity

Download English Version:

https://daneshyari.com/en/article/2474565

Download Persian Version:

https://daneshyari.com/article/2474565

Daneshyari.com