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a b s t r a c t

Air supply is crucial for creating an acceptable air distribution inside aircraft cabins. To determine proper
air-supply parameters, a conventional design has to solve many cases to obtain the flow patterns for each
air-supply parameter, which is time-consuming. This study proposed a proper orthogonal decomposition
(POD) of the flows to accelerate the design. A few original thermo-flow data samples are obtained using a
full CFD simulation, and then the orthogonal spatial modes and their coefficients are extracted from
these data samples. A trial and data sample increase scheme is used to determine whether the CFD-
provided data samples are sufficient. A shape-preserving interpolation is applied to estimate the co-
efficients of the spatial modes between two neighboring data samples. With a quick map of the thermo-
flow fields, the proper air-supply parameters can be rapidly determined based on the specific design
criteria. The proposed method was applied to determine the size of an air-supply opening in a three-
dimensional aircraft cabin, with the percentage of dissatisfied (PD), the predicted mean vote (PMV)
and the mean age of air as the design criteria. The results show that the POD-based design is able to
construct the field data with generally good accuracy. The inversely determined air-supply opening sizes
between the proposed method and the full CFD simulation are quite similar. Future research may explore
a better coordination between the original data sample preparation using the full CFD simulation and the
interpolation of the coefficients of the spatial modes to further reduce the computing time.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Proper air distribution is crucial for maintaining a comfortable
thermal environment and good air quality in enclosed spaces. To
design an appropriate air distribution, a cause-effect relationship
must be established between the air-supply parameters and the
resulting environmental performance. This cause-effect relation-
ship is governed by the NaviereStokes (NeS) equations. Because of
the nonlinearity in the NeS equations, mapping the cause-effect
from a design parameter to the interior environmental perfor-
mance is not straightforward. It is challenging to determine the
exact air-supply parameters that can create the target performance
of thermal comfort and interior air quality. The current design
would require a lengthy iterative trial-and-error procedure, by
enumerating every possible air-supply parameter to find an
optimal solution. An inverse design is able to provide a faster
approach for fulfilling the task by setting the design targets first and

then inversely solving for the required causal boundary parameters.
This approach forms the framework of inverse modeling, i.e.,
determining causal information from certain expected
consequences.

Current inverse modeling in indoor environments is primarily
constrained to pollutant source identification, such as the deter-
mination of pollutant source locations [1e5], quantifying temporal
pollutant release rates [6], and judging pollutant release times [7].
These methods may not be applicable to the inverse design of
enclosed environments [8]. When identifying pollutant sources in a
fixed flow context, an inversion of the passive scalar transport
equation is sufficient. However, the inverse design of enclosed
environments would require an inversion of the thermo-flow
equations, which include a velocity vector, pressure scalar, and
temperature scalar; occasionally, all of the above variables are
coupled together.

There are only a few studies addressing the inverse design of
enclosed environments. Xue et al. [9] developed a CFD-based ge-
netic algorithm to optimize and predict flows in confined spaces.
Zhai et al. [10] imposed constraints on a multi-objective genetic* Corresponding author.
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algorithm to design ventilation systems for an aircraft cabin. Zhang
and You [11] applied a neural network to optimize air-supply speed
and temperature for a commercial aircraft cabin. Currently, no
study has inversely determined the sizes of air-supply openings for
an enclosed space. In addition, the computing efficiency for both
the CFD-based genetic algorithm and the neural network is quite
low due to the large number of forward CFD simulations involved.

To accelerate the forward thermo-flow solution, a POD tech-
nique was developed. The POD method was proposed by Lumley
[12] nearly a half century ago to analyze inhomogeneous turbulent
flows. The POD technique provides a basis for the modal decom-
position of an ensemble of data, such as the thermo-flow fields
obtained from numerical simulations or experiments. The coherent
structures of these data that contain the basic features of the fields
are extracted. The most important benefit of the POD analysis is its
efficiency in capturing the dominant features with only a few
modes [13]. Early applications of the PODmethod consisted of a few
near-wall and jet-induced mixing flows [14e16]. Later, the snap-
shot method [17] was proposed to minimize the dimensions of the
POD eigenvalue system. Snapshots are the data samples used for
extracting the POD modes, which reduce the dimensions of the
eigenvalue system from the number of grid points to the number of
snapshots. Generally, the number of snapshots is far less than the
number of spatial grid points, and thus a significant amount of
computing costs can be saved.

In enclosed environments, the POD is primarily used for the
rapid prediction of indoor thermo-flow and pollutant

concentrations, optimization of air-supply parameters, and devel-
opment of controllers for dynamic ventilation control. Elhadidi and
Khalifa [18] applied a POD analysis to efficiently predict the indoor
velocity and temperature distributions inside an empty office. Ding
et al. [19] proposed a POD-based data interpolation to predict the
thermo-flow fields for natural and forced convection flows. Sempey
et al. [20] performed a POD-based prediction of the temperature
distribution in air-conditioned rooms in a fixed-flow context. Allery
et al. [21] tracked the particle motion in a two-dimensional venti-
lated cavity with airflow provided by a POD construction. Li et al.
[22] integrated a genetic algorithm into the POD prediction of
thermo-flow to efficiently optimize the air-supply velocity and
temperature. Ahuja et al. [23] developed POD-based controllers to
eliminate the heat disturbance in an indoor environment. Tallet
et al. [24] used a POD analysis to dynamically control the window
opening for optimizing the indoor environment comfort and
quality. Li et al. [25] proposed a POD-based temperature prediction
model for the dynamic control of room temperature.

The above review reveals that the current inverse design suffers
from a high computing cost. The POD has provided a quick method
for obtaining the thermo-flow fields based on a limited number of
full CFD simulations. It is viable to use the POD analysis to accel-
erate the inverse design. This study demonstrates how a POD based
model was utilized to promptly determine the size of an air-supply
opening in an aircraft cabin. The solution accuracy and the
computing costs were compared between the full CFD simulation
and our proposed POD approach.

2. Methodologies

In this section, the basic principles of the POD are first outlined,
followed by criteria for determining whether the original data
samples provided by the full CFD simulation are sufficient. Then the
solution procedure for the POD-based prompt design is presented.

2.1. Basic principles of POD analysis

The POD method originates from the decomposition of turbu-
lent flow fields. However, the method can be applied to decompose
any data ensemble based on the statistical theory. This investiga-
tion has applied the POD to analyze the field data of air velocity,
temperature andmean age of air when the air-supply opening sizes
are varied. Then a quickmap from the air-supply opening size to the
velocity, temperature and mean age of air is established. Let f
represent a dummy vector for velocity, temperature and mean age
of air at all grid points that constitute a vector. Suppose that we
have an ensemble {fi}, each as a function of the spatial coordinates,
i.e., f ¼ f(x), where x represents a position vector. We can define an
orthogonal basis (or spatial mode, or POD mode) 4 that captures
more information on a variable than any other mode, which is
maximized with the projection of f onto 4 [13] as follows:

max

D
jðf;4Þj2

E
k4k2

; (1)

where ( , ) represents the inner product, j,jdenotes themodulus, 〈,〉
is an averaging operation, and k,k is the L2-norm. Eq. (1) can be
recast into the following EulereLagrange integral equation [26] as:Z
U

�
fðxÞf*ðx0Þ�4ðx0Þdx0 ¼ l4ðxÞ; (2)

where * denotes the complex conjugation, l is a Lagrangian
multiplier, and U is the domain over which f(x) is defined. Writing

Nomenclature

a coefficient vector of dummy variables or
eigenvector

a element of the coefficient vector a
c coefficient of the POD mode
E error between the interpolated fields and the CFD

simulated fields
f dummy vector for the velocity, temperature, etc., at

all grid points that constitute a vector
f dummy variable for the velocity, temperature, etc.,

at a grid point
n number of eigenvalues for which the general energy

exceeds 99.99%
N number of grid points
P number of data samples
s averaged autocorrelation matrix of the fields
s elements in the averaged autocorrelation matrix
x,x0 position vector

Greek variable
4 orthogonal basis or spatial mode or POD mode
l Lagrangian multiplier or eigenvalue of s
U domain over which f(x) is defined

Superscript
i, j index of a data sample
k index of a spatial mode

Subscript
i, j index of an eigenvector
k index of coefficient of a POD mode
m index of a grid point
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