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a b s t r a c t

Obtaining information about particle dispersion in a room is crucial in reducing the risk of infectious
disease transmission among occupants. This study developed a Markov chain model for quickly obtaining
the information on the basis of a steady-state flow field calculated by computational fluid dynamics.
When solving the particle transport equations, the Markov chain model does not require iterations in
each time step, and thus it can significantly reduce the computing cost. This study used two sets of
experimental data for transient particle transport to validate the model. In general, the trends in the
particle concentration distributions predicted by the Markov chain model agreed reasonably well with
the experimental data. This investigation also applied the model to the calculation of person-to-person
particle transport in a ventilated room. The Markov chain model produced similar results to those of the
Lagrangian and Eulerian models, while the speed of calculation increased by 8.0 and 6.3 times,
respectively, in comparison to the latter two models.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, outbreaks of airborne infectious diseases,
including influenza [1], measles [2], tuberculosis [3], and severe
acute respiratory syndrome (SARS) [4], have occurred indoors. All
of these outbreaks have been proven to be associated with the
airflow patterns in indoor environments [5]. An infected person can
exhale particles carrying pathogens through the activities of
breathing, coughing, talking, and sneezing, which are transient in
nature. These particles can cause the transmission of infectious
diseases to other occupants in the same enclosed environment
[6,7]. Hence, it is essential to predict transient particle transport in
the enclosed environment in order to improve air distribution
design and reduce the risk of infection.

As a powerful airflow and contaminant modeling tool,
computational fluid dynamics (CFD) has been widely used in
predicting transient particle transport in enclosed environments.
For particle modeling, the Eulerian and Lagrangian methods are

popular. For instance, Li et al. [8], Seepana and Lai [9], and Chen
et al. [10] studied the effects of ventilation parameters on person-
to-person particle transport using an Eulerian drift flux model. Li
et al. [11] and Chen et al. [12] investigated the effectiveness of
covering a cough on reducing the receptor's exposure using an
Eulerian method. Hang et al. [13] used an Eulerian model to assess
the influence of human walking on the transmission of airborne
infectious diseases in a six-bed isolation room. Chen et al. [14],
Gao et al. [15], and Zhang and Li [16] applied the RNG k-ε model
with a Lagrangian method to calculate the transport of exhaled
droplets in a dental clinic, an office, and a fully-occupied high-
speed rail cabin. Zhang and Chen [17] compared the Eulerian and
Lagrangian methods for predicting transient particle transport
from a cough in a four-row aircraft cabin. Wang et al. [18] sys-
tematically compared the Eulerian and Lagrangian methods with
various turbulence models and found that the Eulerian method
was faster than the Lagrangian method. Both the Eulerian and
Lagrangian methods can provide detailed information about
transient particle concentration distributions. However, evenwith
the Eulerian method, the unsteady-state calculation with itera-
tions in each time step is considerably time-consuming. For
instance, Wang et al. [18] reported that the computing times of the
Eulerian and Lagrangianmethods for calculating transient particle
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transport in a typical room were 62.2 and 84.9 h, respectively, on
an eight-core cluster with two 2.5 GHz AMD quad-core
processors.

Several studies have demonstrated the ability of the Markov
chain technique to quickly predict spatial and temporal particle
concentrations. For instance, Nicas [19] and Jones and Nicas [20,21]
applied the Markov chain technique in a multi-zone model. How-
ever, this model does not inform users about particle movements
between zones with respect to the required input values. Chen et al.
[22] further used the CFD approach with Lagrangian particle
tracking to obtain such information in order to complete the
method. Since Lagrangian particle tracking is highly time-
consuming, this method is suitable only for an extremely coarse
grid. Therefore, a new model that not only works on a fine grid, as
do the Eulerian and Lagrangian methods, but also runs faster than
these two methods, is desirable. This investigation aimed to
develop a Markov chain model for quickly predicting detailed
transient particle concentration distributions in enclosed
environments.

2. Methods

2.1. Airflow and turbulence model

This study used the renormalization group (RNG) k-ε model to
calculate airflow and turbulence. This model has the best overall
performance among all Reynolds-averaged NaviereStokes (RANS)
models for enclosed environments [23]. The equations for the RNG
k-ε model can be found in the Fluent manual [24].

This investigation assumed that the airflow field was fixed. It
could be problematic if the source was able to change the airflow
pattern, as in the case of a powerful cough without covering the
mouth. Therefore, this study assumed that the mouth was effec-
tively coveredwhen a personwas coughing and that, as a result, the
influence of the initial momentum from the cough on the receptor's
exposure was minimized [12]. Thus, the assumption of a fixed
airflow field should be valid in most cases.

2.2. Markov chain model for transient particle transport

This study used the first-order homogenous Markov chain
technique [25] to calculate transient particle transport. ThisMarkov
chain technique is effective for particles with a diameter smaller
than 3 mm, which have negligible inertial effects [22]. Assuming
that the CFD grid has n-1 cells, the additional cell n can be assigned
to represent the space towhich the particles are removed. Then the
probabilities of the state's changing of a particle can form an n � n
transition probability matrix, pij:

P ¼
�
pi;j
�
ðn�nÞ

¼

0
BB@

p1;1 p1;2 … p1;n
p2;1 p2;2 … p2;n
« « «
pn;1 pn;2 … pn;n

1
CCA (1)

where pi,j is the probability of a particle's moving from cell i to cell j
in a certain time step, Dt. The transition probability matrix has the
following property:

Xn
j¼1

pi;j ¼ 1; pi;j � 0 (2)

This property can be regarded as the constraint of mass balance
for the whole domain. Since the movement of the particles nor-
mally does not have a major impact on the airflow field, the tran-
sition probability matrix is fixed.

The particle number vector at the present time (state k) is
assumed to be:

Nk ¼
�
Nk;1 Nk;2 / Nk;n

�
(3)

where Nk,i represents the number of particles in cell i at time k.
Then, after one time step (time kþ1), the number of particles in cell
i can be calculated by:

Nkþ1;i ¼ Nk;1p1;i þ Nk;2p2;i þ/þ Nk;npn;i (4)

Thus, the particle number vector at time kþ1 can be calculated
by:

Nkþ1 ¼ NkP (5)

If one calculates the particle transport from time zero, the par-
ticle number vector at time k can be calculated by:

Nk ¼ NintP
k (6)

where Nint is the initial particle number vector. The particle number
concentration in cell i at time k can be calculated by:

Ck;i ¼
Nk;i

Vi
(7)

where Vi is the volume of the cell.
The transition probability matrix can require a considerably

large storage memory for a normal CFD grid. To reduce the size of
the matrix, Eq. (4) was rewritten as:

Nkþ1;i ¼ Nk;ipi;i þ
X
nb

Nk;nbpnb;i (8)

where the subscript nb represents the neighboring cells or
boundaries. Eq. (8) shows that the Markov chain model does not
require iterations in each time step. Therefore, this model has the
potential to reduce the computing cost.

2.3. Transition probabilities

The key operation in applying theMarkov chain technique to the
calculation of transient particle transport is to obtain the transition
probabilities, pij. Again, pij is the probability of a particle's moving
from cell i to cell j in a certain time step, Dt. The first step is to
calculate the probability of a particle's remaining in the current cell
in Dt, pii. It is assumed that there are N0 particles present in cell i at
time zero and that these particles can be removed only by the flow
of air. The particle mass balance equation for this cell is [19]:

dNðtÞ
dt

¼ �NðtÞ
Vi

X
nb

Qi;nb (9)

where Qi,nb is the airflow rate from cell i to the neighboring cell.
Solving Eq. (9) leads to the following equation [19]:

NðDtÞ ¼ N0 exp

 
�
X
nb

Qi;nb

Vi
Dt

!
(10)

Therefore, after a certain time step, Dt, N(Dt) particles remain in
this cell. Thus, the probability of a particle's remaining in the cur-
rent cell in Dt can be expressed as [19]:

pi;i ¼ exp

 
�
X
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Qi;nb

Vi
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!
(11)
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