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a b s t r a c t

Data assimilation is widely used in weather forecasting and other complex forecasting problems such as
hydrology, meteorology, and fire dynamics. Among various data assimilation methods, the Ensemble
Kalman Filter (EnKF) is one of the best solutions to large-scale nonlinear problems while the compu-
tational cost is relatively less intense than other forecasting methods. In this paper, a new application of
EnKF to forecast indoor contaminant concentrations is presented. The first part of the paper introduces
the fundamental theories of data assimilation. The second part is a case study of forecasting the con-
centrations of a tracer gas in a multi-zone manufactured house by using a mass balance model with an
EnKF. The benefits of EnKF and several important parameters for EnKF were discussed including numbers
of ensemble members and observations, time step of observations, and forecasting lead time. The EnKF
method presented is one of the first studies applied to the indoor environment field. It was shown that
by using EnKF, the predictability of the simple indoor air model for the multi-zone space was improved
significantly.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The forecasting of indoor environment is of great interests due
to its close relationship to occupant’s safety [1], thermal comfort
[2], and energy efficiency [3,4], for which an accurate prediction of
important parameters is often needed such as temperature, relative
humidity and contaminant concentration. Forecasting these indoor
air properties, especially solving contaminant transport problem in
a dynamic environment, is a difficult task since the physical states
of the building environment could change rapidly over time [5].
Under such uncontrollable factors as ambient temperature, veloc-
ity, humidity, and occupant loads, the contaminant estimation is
hard to achieve by conventional methods using steady state anal-
ysis of constant model parameters. In addition, sudden release of
contaminant, opening doors and windows, change of occupant
behavior and the use of electric appliances are a few common ex-
amples that may further increase the difficulty of solving the
forecasting problem. By using any numerical model to predict
future indoor air contaminants, these uncertain events will cause
the predicted physical states to depart from reality as the model

evolves forward over time. Previous studies showed a few different
ways of indoor environment forecasting. Federspiel utilized a
method originating from the optimization theory, so-called the
Kalman Filter, to estimate the strength of gas sources in buildings
successfully [6]. But the model has some restrictions when it ap-
plies tomulti-zone problems since source strength and air flow rate
must be known a priori. Kemajou presented that indoor air tem-
perature and relative humidity could be quickly predicted by using
artificial neural network (ANN) [7]. Vukovic [8] and Bastani [9]
applied ANN to identify indoor contaminant source successfully
and can be used to optimize indoor air sensor networks. But the
potential problem of using a black-box type of methods like ANN is
that the training of models still relies on trial and error to deter-
mine an optimum model structure while the training parameters
usually cannot be applied to other buildings. Another limitation is
its inefficiency for each new case, in which huge amount of data is
required for the training. Sreedharan introduced another model of
forecasting simulation using Bayesian Monte Carlo method to
quickly analyze measurements from multiple indoor air sensors
[10]. This system canmonitor real-time indoor environment to help
protect occupants by locating the release source of a high-risk
pollutant. Follow-up studies [11,12] focus more on using hetero-
geneous sensor systems such as monitoring door position and
mechanic ventilation operating status. Extensive reviews of other
methods for locating indoor air contaminants can be found in the
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article conducted by Liu and Zhai, 2007 [13]. Most of these previous
studies focus on locating contaminant source instead of predicting
dynamic future evolvement of concentrations in a multizone
building. In this paper, the technique of data assimilation is applied
to forecast indoor contaminants transport.

The major task of forecasting simulations is to predict future
states of physical phenomenon with a certain lead time and accu-
racy. In order to find optimal state variables, data assimilation
provides different algorithms for parameter estimation while tak-
ing into account uncertainties of measurements and numerical
predictions.

In 1960, a pioneer research of data assimilation theory has been
established by R. E. Kalman [14], the Kalman Filter, which provides
a recursive solution to find a best possible estimation of the true
state. Instead of finding an optimal estimation for one value as best
linear unbiased estimation (BLUE), the Kalman Filter can be applied
to a dynamic model that evolves over time [15,16]. In order to solve
different types of nonlinear problems, a few Kalman Filter variants
have been proposed. In the Extended Kalman Filter (XKF), the
nonlinear models are linearized by using partial derivatives which
is similar to a Taylor series expansion. It has been proven that XKF is
effective in many applications but its weakness is the error prob-
ability density is not fully considered in the linearization. Although
the analysis scheme of XKF is similar to traditional Kalman Filter,
the computational requirements of XKF are drastically increased by
additional numerical operations, such as linearization. Another
mainstream of the data assimilation theories for nonlinear prob-
lems is four-dimensional variational assimilation (4D-Var) and is
widely used to weather forecasting [17]. Like its counterpart, three-
dimensional variational assimilation (3D-Var), 4D-Var is based on
minimizing a cost function. In order to calculate the gradient of the
cost function for minimization, it is required to manipulate large
matrices, which makes 4D-Var computationally intensive. Evensen
proposed a more affordable method, Ensemble Kalman Filter, to
determine error statistics by using the Monte Carlo method [18].
The method reduces computational requirement of XKF by using
ensemble members, which are similar to the samplings in other
Monte Carlo methods, to avoid direct calculation and storage of the
evolution of the large error covariance matrices. Each ensemble
member in EnKF can be calculated separately so it is especially
suitable for parallel computing and solving large scale problems.
This method has been widely used in weather forecasting, hy-
drology and fire dynamics predictions [16,19]. No previous studies
have been reported to use EnKF for indoor environment simula-
tions. Different from existent studies, the indoor air forecasting
model with the EnKF is performed without determining source
strength and location but instead depending on the accurate esti-
mation of error statistics including uncertainties from both exper-
iment and numerical model. Therefore the EnKF can perform faster
prediction than other methods but relies on rapidly obtaining
measurement data.

The objective of this paper is to explore the applications of EnKF
to forecasting indoor air environment and discuss the key param-
eters involved in the accuracy of EnKF for indoor air contaminants
transport forecasting. This paper applied an EnKF to a case study of
forecasting the concentrations of a tracer gas in a multi-zone
manufactured house by using a mass balance model. The benefits
of EnKF and several important parameters for EnKF were discussed
including numbers of ensemble members and observations, time
step of observations, and forecasting lead time. The EnKF method
presented is one of the first studies applying a weather forecasting
model to indoor environment field. In this paper, all numerical
operations relating to data assimilation are based on a generic
toolbox for data assimilation, OpenDA [20], developed by Delft
University of Technology, Netherlands.

2. Methodology

The detailed explanations on data assimilation and the funda-
mental theories of EnKF can be found in many references
[14,15,18and20] so they are not covered in this paper to avoid
repetition. Instead of copying down the math of EnKF, this paper
will focus on how the fundamental methodology of EnKF is applied
to the indoor air modeling of a multi-zone manufactured house.

2.1. Multi-zone manufactured house

The experimental data for data assimilation come from a series
of tracer gas measurements in a manufactured house conducted by
National Institute of Standards and Technology (NIST) in 2007
[21,22]. The house includes living room, family room, kitchen and
three bedrooms without people during the time of the test and
with mechanical ventilation running under normal control and
schedule as shown in Fig. 1. An attached garage was added after the
measured data were collected so it was not included in this study.
During the experiment, tracer gas, sulfur hexafluoride (SF6), was
injected about every six hours in the living room and the concen-
tration of SF6 was measured at various indoor locations for every
ten minutes by gas chromatography. The system is capable of
measuring SF6 concentration over a range of 3e300 ppb, with an
uncertainty of about 5% of the reading. In this study, bedroom 3was
excluded because its sampling line was moved to the outside for
another research project. Please note that the measurement of each
room starts from different time step as shown in Table 1. For
example, master bedroomwas measured at t ¼ 0, 10 min and so on,
and bedroom 2 is measured at t ¼ 1, 11 min etc. The average air
change between indoors and outdoors was calculated based on the
tracer gas decay method, which was about 0.1e0.4 air changes per
hour (ACH). The SF6 test has been continuously running and it
covers large variants of test conditions so the test house was
selected. In this study, we took twelve hours measurement data
from four different locations as observation while two injections
are included. The first one is at the beginning of the experiment and
the other one is about six hours after the first injection. The in-
jection rate is intended to achieve an average initial gas concen-
tration of around 120 ppb but is assumed to be unknown in the
simulations. The instruments were calibrated regularly and
believed to be accurate enough. 5% error is thus assigned to the
observation errors accounting for the mentioned uncertainties. The
uncertainties associated with the mixing conditions are considered
in the numerical model in the following sections.

2.2. Tracer gas concentration model

The modeling of indoor environment here is to forecast the SF6
concentrations in the different rooms of the house by a mass

Fig. 1. CONTAM model of the manufacture house [20].
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