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a b s t r a c t

Biosimilarity assessments are performed to decide whether 2 preparations of complex biomolecules can
be considered “highly similar.” In this work, a machine learning approach is demonstrated as a math-
ematical tool for such assessments using a variety of analytical data sets. As proof-of-principle, physical
stability data sets from 8 samples, 4 well-defined immunoglobulin G1-Fragment crystallizable glyco-
forms in 2 different formulations, were examined (see More et al., companion article in this issue). The
data sets included triplicate measurements from 3 analytical methods across different pH and temper-
ature conditions (2066 data features). Established machine learning techniques were used to determine
whether the data sets contain sufficient discriminative power in this application. The support vector
machine classifier identified the 8 distinct samples with high accuracy. For these data sets, there exists a
minimum threshold in terms of information quality and volume to grant enough discriminative power.
Generally, data from multiple analytical techniques, multiple pH conditions, and at least 200 represen-
tative features were required to achieve the highest discriminative accuracy. In addition to classification
accuracy tests, various methods such as sample space visualization, similarity analysis based on
Euclidean distance, and feature ranking by mutual information scores are demonstrated to display their
effectiveness as modeling tools for biosimilarity assessments.

© 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

Introduction

Owing to the structural complexity and inherent heterogeneity
of biopharmaceutical drugs, they are sensitive to changes in bulk or
drug product manufacturing processes.1,2 Such changes in the
manufacturing processes often occur during scale-up as part of
clinical development and during postapproval life cycle manage-
ment to meet market demand.3,4 Moreover, biopharmaceutical
drug products also must show reproducible batch-to-batch varia-
tion even when they are produced through the same steps. For
follow-on biologics, new manufacturers typically develop their
own production processes, which inevitably may lead to detectable
analytical differences compared with the original bioproducts.5

A major question is what degree of variation and what kinds of
differences are permitted, for the data sets characterizing the 2
groups of biomolecules, for them to be considered as sufficiently
similar (i.e., from a regulatory perspective, they are not necessarily
identical but “highly similar”) in terms of their clinical safety and
efficacy.6

To address such questions, comparability and biosimilarity
studies are performed with biopharmaceutical drugs to assess the
effects of process changes (by the same manufacturer) and pro-
duction of follow-on biologics (by a different manufacturer),
respectively.7-11 These studies first identify the critical quality at-
tributes (CQAs) that are key physicochemical and biological prop-
erties of complex biomolecules to establish parameters such as
their identify, purity, potency, and stability as ultimately linked to
clinical safety and efficacy. To identify CQAs, proper assays must be
developed by evaluating a variety of different potential methodol-
ogies and instruments. Once identified, CQAs can be compared,
through a series of selected analytical tests (e.g., physicochemical,
biological, and animal), across batches, between pre- and post-
manufacturing changes, or between original and biosimilar
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products. The extent of uncertainty in such results ultimately must
be decided to determine the need for, and extent of, human clinical
trials that will be required to establish clinical safety and effi-
cacy.3,8-11

A common method for comparability and biosimilarity assess-
ments is to compare each CQA value directly and statistically, often
in a 1-to-1 fashion, or using more sophisticated approaches.7,12-16

For example, CQA numerical values could be calculated from
experimental data (e.g., melting temperature: Tm) or determined
directly from raw data (e.g., comparisons of spectra vs. tempera-
ture). In 1-to-1 comparisons, statistical tests are performed to see if
there exists any statistically significant difference between 2 groups
of samples. If the results are different, or not conclusive, for a
certain set of CQAs derived from physicochemical and/or biological
potency assays, additional studies involving animal models and/or
human clinical studies may need to be performed. Analytical
evaluations are therefore considered the anchor to any compara-
bility assessment.3,17 Previously, we reported in our laboratories the
use of comparative signature diagrams (CSDs)18,19 as data visuali-
zation tool to more easily assess if a wide variety of data compo-
nents manifest statistically significant differences. CSDs are
effective in identifying regions of raw data readouts (e.g., range of
wavelengths and temperature conditions for spectra) by using co-
lor as a monitor if there exist statistically significant differences.
Such features allow one to learn the characteristics of any differ-
ences in 2 sets of data and help decide whether such differences are
important for similarity determination. These 1-to-1 comparison
schemes, however, lack a way to combine differences found in in-
dividual data sets, which may be required to make overall
decisions.

As an alternative method to 1-to-1 comparison of each CQA, it
may be useful to estimate an overall picture from multiple aspects
of all data sets as part of comparison, biosimilarity comparison. For
example, recent draft guidance from the U.S. Food and Drug
Administration refers to the possible use of fingerprint analysis (i.e.,
“…it may be useful to compare the quality attributes of the pro-
posed biosimilar product with those of the reference product using
a meaningful fingerprint-like analysis algorithm that covers a large
number of product attributes and their combinations with high
sensitivity using orthogonal methods…”).8 Previous work in our
labs have used empirical phase diagrams (EPDs) and radar
charts17,20-22 as data analysis and visualization tools to locate major
patterns extracted from multiple experimental data sets using
principal component analysis (PCA) or normalized scales of relative
changes. Because an EPD can summarize multiple CQAs, simply
comparing EPDs allows macroscopic and multilateral comparison
between 2 groups of samples. EPDs have been used to qualitatively
evaluate the structural integrity and conformational stability of
closely related macromolecules, for example, wild type and mu-
tants,17,23,24 differentially deglycosylated mAbs,25 and glycosylated
IgG-Fc proteins with different site occupancy or amino acid resi-
dues at the N297 glycosylation site.26

Data visualization tools such as CSDs, EPDs, and radar charts are
helpful tools for qualitative and visual comparison of protein sta-
bility data sets. As a complementary and more quantitative
approach, machine learning methods will be explored here for
comparative assessments of protein samples using a variety of
different analytical data sets. Machine learning methods are well
suited for solving classification and regression problems. Compar-
ative assessments can be framed as a classification problem where
the goal is to determine whether 2 groups of samples, given their
CQAs, are drawn from the same category. Similarly, comparative
assessments could be framed as a regression problem to find the
fractional similarity of a sample to a target category. For machine
learning techniques, previously determined CQAs are used as

features, or CQAs can be computationally determined from all
available data by techniques such as feature selection or ranking.
Reductions in the number of features (or CQAs) are important not
only in improving machine learning accuracy but also in reducing
the time and resource costs associated with obtaining them. Once
minimal CQAs are determined by extensive testing of the original
biopharmaceutical product, data from new batches from process
changes or follow-on biosimilar products can be requested to
provide appropriate information for comparability and bio-
similarity assessments, respectively.

In this article, a number of analytical data sets generated with 4
well-defined IgG1-Fc glycoforms were used as a model system for
biosimilarity assessments using machine learning techniques. As
described in the companion articles in this special issue of Journal of
Pharmaceutical Sciences, these IgG1-Fc glycoforms provide a model
system for biosimilarity assessments, that can potentially be
applied to monoclonal antibodies, in terms of varying levels of
purity and potency (see Okbazghi et al.27), susceptibility to chem-
ical degradation (see Mozziconacci et al.28), and physical stability
profile (see More et al.29) based on the type and level of glycosyl-
ation (at the N297 N-linked glycosylation site in the CH2 domain of
IgGs). Furthermore, 2 different formulations (with NaCl or sucrose)
were tested for each Fc glycoform, and the nature of the formula-
tion has been found to alter the physical stability of Fc glycoforms
(More et al29). The different formulations are tested to simulate
follow-on biologics that may be formulated differently. Biophysical
stability data sets (across different solution pH values and tem-
peratures) using triplicate measurements from 3 different analyt-
ical methods were used in this study (a total of 2066 data features).
Established machine learning techniques were used to evaluate
whether they have sufficient discriminative power in this appli-
cation. On successful identification by tailored mathematical
models and classifiers, they could be further applied to assess
similarity between these model reference and biosimilar samples.

Materials and Methods

Sample Preparation

Four different well-defined IgG1-Fc glycoforms were produced
and characterized, as described in the companion articles in this
special issue, in terms of structural integrity and potency (see
Okbazghi et al.27 in this issue), susceptibility to chemical degradation
(see Mozziconacci et al.28 in this issue), and physical stability profile
(see More et al.29 in this issue). Briefly, the high mannose IgG1-Fc
(HM-Fc) was first expressed and purified from yeast. The Man5 and
GlcNAc glycoforms (Man5-Fc and GlcNAc-Fc) were produced by
enzymatic digestion from HM-Fc using a bacterial a-1,
2-mannosidase (GH92),30 and endoglycosidase H, respectively. The
N297Q nonglycosylated form (N297Q-Fc) was made by using site-
directed mutagenesis to remove the N-linked glycosylation site (see
Okbazghi et al.27 in this issue). The 4 glycoforms were prepared at a
concentration of 0.2 mg/mL and were dialyzed into 2 different for-
mulations: 20 mM of citrateephosphate buffer at pH 4.0-7.5 (0.5 pH
unit increments) containing either (1) NaClwith a total ionic strength
of 0.15 or (2) 10% sucrose (w/v; see More et al.29 in this issue).

Analytical Methods

For the 8 different IgG-Fc glycoform samples described previ-
ously, 3 different analytical methods were used to monitor protein
structural integrity andphysical stability as a function of solutionpH
and temperature. Intrinsic (tryptophan [Trp]) fluorescence,
extrinsic fluorescence (with SYPRO orange dye), and turbidity (by
monitoring optical density at 350 nm) were measured in triplicate
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