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ABSTRACT: Pharmacokinetics (PK) applications can be seen as a special case of nonlinear, causal systems with memory. There are cases in
which prior knowledge exists about the distribution of the system parameters in a population. However, for a specific patient in a clinical
setting, we need to determine her system parameters so that the therapy can be personalized. This system identification is performed many
times by measuring drug concentrations in plasma. The objective of this work is to provide an irregular sampling strategy that minimizes the
uncertainty about the system parameters with a fixed amount of samples (cost constrained). We use Monte Carlo simulations to estimate
the average Fisher’s information matrix associated to the PK problem, and then estimate the sampling points that minimize the maximum
uncertainty associated to system parameters (a minimax criterion). The minimization is performed employing a genetic algorithm. We
show that such a sampling scheme can be designed in a way that is adapted to a particular patient and that it can accommodate any dosing
regimen as well as it allows flexible therapeutic strategies. C© 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J
Pharm Sci 104:2103–2109, 2015
Keywords: irregular sampling; Fisher information matrix; dynamic systems; pharmacokinetic time sampling; Pharmacokinet-
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INTRODUCTION

Pharmacokinetics (PK) is the study of the time evolution of
the amount of a certain drug in the body as well as its con-
centration in different tissues and plasma.1 This evolution is of
crucial importance because for many drugs there is a therapeu-
tic window within which the drug is effective (below a certain
concentration, the drug has no effect; and above a certain con-
centration, the drug may become toxic). Following safety rec-
ommendations, the therapeutic window is assumed to be the
same for all patients. However, each patient has a different re-
sponse to a certain dose regimen. In fact, drug concentration in
plasma can be seen as the output of a nonlinear, causal system
with memory whose input is the dose applied at each time. In
general, it is accepted that the system belongs to a parametric
family of systems and that the response of a particular pa-
tient corresponds to a particular choice of system parameters.
Consequently, personalizing the therapeutic regimen to a par-
ticular patient allows identifying her system parameters and
specific dosing regimen. Thus, the expected drug concentration
in plasma is within the therapeutic window. This is normally
performed in an intensive care unit for certain pathologies and
with drugs whose therapeutic window is relatively tight.2–9

In order to determine the patient’s parameters, we need to
give a first dose (similar to a delta function) and monitor the
patient’s response (equivalent to her impulse response). This
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monitoring is performed by extracting blood samples from the
patient and analyzing the drug concentration in plasma. For
cost reasons and to avoid unnecessary inconveniences to the pa-
tient, the number of blood extractions is limited. Additionally,
for certain drugs, it would be preferable to be able to administer
multiple doses as there are parameters that do not “manifest”
their effects at low drug concentration.

The goal of this work is to provide a time sampling basis
that, on average over a population, minimizes the maximum
uncertainty about any of the system parameters and that can
accommodate any dosing regimen. We will presume that the
distribution of parameters within the general patient popula-
tion is known. Then, we will use Monte Carlo simulations to
determine which would be the distribution of the Fisher’s in-
formation matrix for any sampling scheme. Then, the sampling
scheme will be optimized using a global optimization algorithm
(in our implementation a genetic algorithm) so that the max-
imum uncertainty of the worse determined parameter is min-
imized. If there is a parameter we are particularly interested
in, we can minimize its uncertainty instead.

A similar approach has already been proposed,10–23 and it
is known as D-optimal or C-optimal sampling. Most of these
algorithms do differ on the optimization algorithm employed
and the use or not of the a priori distribution of model pa-
rameters. However, our approach differs in a number of points:
first, previous approaches presume knowledge of the closed-
form solution of the differential equation system being solved,
which is not true for any arbitrary dosing regimen; second,
our approach easily incorporates random nuisance parameters
that do not need to be estimated; third, our goal function is a
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minimax function that minimizes the maximum variance of
any of the parameters, instead of a global measurement of the
overall variance. The first two points make an important step
forward in the design of the optimal sampling point for highly
nonlinear systems. Additionally, our approach can be applied to
patient-specific parameters instead of providing sampling rules
for a general population. This is also an appealing feature of
our method as it can be readily used in clinical practice.

METHODS

Most PK models can be described with a first-order linear or
nonlinear differential equation of the form

dC
dt

= f(t, C, �, α) + g(t, X, �,α) (1)

where t is the continuous time variable, C(t) is a vector of con-
centrations measured at multiple locations (e.g., blood plasma
and urine), � is a vector with the model parameters (those that
we are interested in determining by the measurement process),
αis a vector of nuisance parameters (in which we are not inter-
ested but that also affect the concentration levels), and X(t) is
the input driving signal [in our case the dose given to the pa-
tient as a function of time; note that this dose is also a vector
allowing multiple dosage routes (oral, intravenous, . . . )].

The objective of system identification is to find the � pa-
rameters from a set of (tn, Cn) measurements. This is carried
out by least-squares regression of the model above evaluated at
the sampling times, producing the predicted observations [tn,
C(tn)], and comparing these predictions to the actual measure-
ments (tn, Cn). Measurements are supposed to be independent
and normally distributed with zero mean and a variance F2

C.
The variance on its turn depends on the concentration being
measured.24 Concisely, it depends on the assay sensitivity, AS,
and the coefficient of variation, CVassay,

F2
C = (AS + CVassayC)2 (2)

It can be proven25 that the asymptotic maximum-likelihood
estimate of the system parameters is unbiased and distributed
as a Gaussian

�̂MLE ∼ N
(
�true, I−1

T

)
(3)

where IT is Fisher’s information matrix calculated on the N
measurements performed at the time points in the set T. Ob-
viously, N must be larger than the number of � parameters,
otherwise there would not be any spare degree of freedom to
perform the regression, and the fitting would become an inter-
polation problem highly exposed to measurement errors.

The ij-th element of Fisher’s information matrix can be cal-
culated as:

IT,ij =
N∑

n=1

(
∂(Cn − C(tn))

∂�i

)T

�−1
Cn

∂(Cn − C(tn))
∂�j

=
N∑

n=1

(
∂C(tn)
∂�i

)T

�−1
Cn

∂C(tn)
∂�j

(4)

where �Cn is a diagonal matrix whose ii-th entry is the variance
associated to the i-th concentration measurement at the n-th
time point (Eq. (2). If we have some a priori distribution for
the system parameters, as is the case in the problem addressed
in this article, we should incorporate this information into the
Fisher’s information matrix. For instance, it can be shown26

that assuming that the parameters are independent and nor-
mally distributed amounts to add in the diagonal terms the
inverse of the variance of each one of the prior distributions. In
this way, the diagonal terms become

IT,ii = 1
F2

�i

+
N∑

n=1

(
∂C(tn)
∂�i

)T

�−1
Cn

∂C(tn)
∂�j

. (5)

We need to calculate the term ∂C(tn)
∂�i

. For doing so, let us define
the sensitivity with respect to the parameter �i as:

s�i = ∂C
∂�i

(6)

Obviously, this sensitivity is a vector that depends on t. In
Refs. 27 and 28, a similar derivation was performed for the case
of scalar, instead of vector, functions. Let us find a differential
equation that the sensitivity must satisfy in order to be able
to solve for the sensitivity at any time and, in particular, at
the time points tn. For doing so, we differentiate the previous
equation with respect to time

ds�i

dt
= d

dt

(
∂C
∂�i

)
(7)

Assuming that C(t) is a C2 function, we can interchange the
differentiation order (Clairaut’s theorem) to get

ds�i

dt
= ∂

∂�i

(
dC
dt

)

= ∂

∂�i

(
f + g

)

= ∂ f
∂C

∂C
∂�i

+ ∂f
∂�i

+ ∂g
∂�i

= ∂f
∂C

s�i + ∂f
∂�i

+ ∂g
∂�i

(8)

Note that the term ∂f
∂C is a full matrix, not a vector. This is an

ordinary differential equation with the initial value s�i(t0) =
0.27 We may use this equation to determine the vectors ∂C(tn)

∂�i
needed by Fisher’s Information matrix above. Note that these
vectors depend on our estimate of the system parameters, �̂,
and the nuisance parameters, α, as well as the time sampling
points tn (n = 1, 2, . . . , N). As these two sets of parameters are
random vectors, the sensitivity vectors are also random with
a distribution that, in principle, may not be assumed to follow
any known distribution (e.g., Gaussian).

As shown in Eq. (3), the uncertainty on the system parame-
ters estimate depend on Fisher’s information matrix, which in
its turn is also random (as it is calculated using random vec-
tors). So we propose to minimize this uncertainty by choosing a
set of N time points, T* that minimizes the maximum expected
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