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This study aims at investigating the simulation error and computational efficiency of indoor particulate
matter (PM) concentration estimation for various kernel functions and particle search algorithms of the
kernel method. Firstly, five kernel functions (the Gaussian, quadratic, cubic, quartic and quintic kernels)
together with five released particle number are applied to establish twenty-five scenarios of indoor
concentration estimation. Measured PM concentration profiles in indoor chambers are used to identify
the most appropriate kernel function among the above scenarios. The simulated results show that the
cubic and quartic kernel functions both give the minimum simulation error and they only need about
40% CPU time of the Gaussian kernel function. Next, two particle search algorithms (the all-pair and
linked-list algorithms) with the cubic kernel function are tested for various numbers of the released
particles and concentration observation points. The present study demonstrates that the linked-list
algorithm provides the same accuracy as the all-pair algorithm for indoor PM concentration estima-
tion. However, for the computational efficiency, the linked-list algorithm is proved to be much better
than the widely used all-pair algorithm. The required CPU time of the all-pair algorithm can be 28 times
as large as the linked-list algorithm when the number of the concentration observation points is more

than 0(10%).

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades, Lagrangian particle modeling has been
extensively developed to model the dispersion of particulate
matter (PM) in atmospheric environment [1,2] and indoor envi-
ronment [3—6]. Lagrangian particle modeling treats PM as
a discrete phase and tracks particle trajectories by solving the
particle dynamic equations [7,8] or random walk models [9]. Many
academic works have demonstrated the advantages of Lagrangian
particle modeling compared to other Eulerian modeling [10,11].
Although Lagrangian particle modeling can accurately provide
detailed temporal and spatial information of PM trajectories and
dispersion history, it cannot directly give PM concentrations, which
should be indirectly obtained through the statistics of a large
amount of particle trajectories [10]. Basically, two methods are
widely used to calculate PM concentrations. The first method is so
called the sampling volume method (or called the box counting
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method) [2]. The computational space is divided into several
imaginary rectangular sampling volumes, and PM concentration in
each sampling volume is hence estimated by counting particle
residence time (particle-source-in-cell) [10] or particle number
(particles-in-the-box) [12] within each volume. This method is
extensively adopted in atmospheric environment such as natural
boundary layers [2] and urban street canopies [12], and indoor
environment like single-room [4,5,10,11], two-room [3,6,13] and
multi-room [14,15].

On the contrary, the second method is referred to as the kernel
method [16], which treats each particle as a finite source mass. The
kernel method does not need imaginary sampling volumes, so that
all of the released particles in the computational domain are useful
in PM concentration computation, resulting in improved accuracy
and computational efficiency compared to the first method [17,18].
Chang et al. [18] have attempted to compare the numerical
performance of indoor PM concentration calculation between the
sampling volume method and the kernel method. Some advantages
of the kernel method have been indicated, including (1) providing
smooth concentration profiles, (2) requiring less computing
resources, and (3) containing improved accuracy at recirculation
zones of the computational domain.
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While the kernel method is used, PM concentration at a given
time and location is determined as the sum of contributions from
all of the particles in the computational domain through a kernel
function and a particle search procedure. The kernel method can be
regarded as an interpolation approach at non-ordered points.
Therefore, the simulation error and computational efficiency of the
kernel method critically depend on the appropriate selection of the
kernel function and the particle search algorithm. In terms of kernel
functions, several kernels (like the Gaussian and polynomial
kernels) have been used in atmospheric PM concentration calcu-
lation [17,19—21], but little work has been done so far in indoor PM
concentration estimation. On the other hand, two algorithms have
been used in non-ordered particle search [22]. One is referred to as
the all-pair particle search algorithm, and another is called the
linked-list particle search algorithm [22]. The all-pair algorithm is
the most intuitive and simplest approach, and is successfully
adopted by Chang et al. [18] for indoor PM concentration estima-
tion. The linked-list algorithm has been proved to be an efficient
method for fluid dynamics [22]. However, this algorithm has not
been tested in indoor PM concentration estimation. As a result,
there is still a lack of research that has focused on the appropriate
selection of the kernel function and the particle search algorithm of
the kernel method in indoor PM concentration estimation.

To fill this gap, the aim of the study is to investigate the simu-
lation error and computational efficiency of indoor PM concentra-
tion estimation for various kernel functions and particle search
algorithms of the kernel method. Firstly, five kernel functions (the
Gaussian, quadratic, cubic, quartic and quintic kernels) together
with five released particle number (4, 40, 80, 400 and 800 No./s
particle injection rates) are integrated into twenty-five scenarios of
indoor concentration estimation to identify the most appropriate
kernel function. A relative comparison of the merits and short-
comings of the scenarios is given. Next, two particle search algo-
rithms (the all-pair and the linked-list) are combined with the
previously obtained appropriate kernel function to give a series of
numerical tests. The most appropriate particle search algorithm is
finally emphasized.

2. Methodology
2.1. PM transport modeling (the particle pre-process)

The Eulerian airflow model and the Lagrangian particle model in
the commercial computational fluid dynamics code ANSYS FLUENT
12.0 [23] are herein adopted to simulate PM transport processes in
indoor environment. In the Eulerian airflow model, the airflow
velocity contains the time-averaged part and the fluctuation part.
The time-averaged part is conducted through solving the renorm-
alization group (RNG) k-e model of the turbulent flows [23], and the
fluctuation part can be gained by using the discrete random walk
(DRW) model [23]. The computed airflow velocity distributions
obtained from the Eulerian airflow model are next input into the
Lagrangian particle model to calculate 3D PM trajectories in the
airflow field. More detailed information of the Eulerian airflow
model and the Lagrangian particle model can be found in [10,11,23].

2.2. PM concentration estimation with the kernel method (the
particle post-process)

As indoor PM trajectories in the entire computational domain
have been given, the present study introduces the kernel method to
compute indoor PM concentrations. In the kernel method, indoor
PM concentration at a given time and location is determined as the
weighted summation of all the particles in computational envi-
ronment through a kernel function and a particle search procedure.

Thus, the indoor PM concentration c(x;) at the position Xx; (x;, yi, zi)
(or called the concentration observation point) can be expressed as

m;

C(X,‘) = Z 13] W |Xi 7xj}7li) (1)
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where n is the total number of particles in the computational

domain, X; (x; y;, zj) and m; are the position and the mass of the jth

particle, respectively, [; is the smoothing length which equals to 1.2

times the grid size in space of airflow computation, and

Wi = W(Ix; — x|, ;) is the kernel function.

2.2.1. Kernel function

Five different kernel functions (the Gaussian, quadratic, cubic,
quartic and quintic kernels) are applied to investigate the simula-
tion error and computational efficiency of indoor PM concentration
estimation [22]. The Gaussian kernel function has been widely used
in atmospheric environment applications and can be expressed as

1 2
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where g; = |X; —Xj|/l; is the relative distance between the ith
concentration observation point and the jth particle.

Other polynomial kernel functions are the quadratic kernel
function
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In Fig. 1, these five kernel functions are plotted together for
comparison. They are displayed as the function of inter-particle
distance, given in units of the smoothing length. Each kernel
function has a support domain, within which the function gives the
weighted impact. The size of the support domain is controlled by
the smoothing length. It should be noted that the support domain is
infinite for the Gaussian kernel function and other polynomial
kernel functions have finite compact supports [22]. In this study,
the support domain shape is spherical. For the quadratic, cubic and
quartic kernel functions, their support domains are all a spherical
zone with a radius of 2I; (Wj(q;; > 2) = 0), and for the quintic kernel
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