## Development of a Targeted Polymorph Screening Approach for a Complex Polymorphic and Highly Solvating API

## ANTHONY M. CAMPETA, BRIAN P. CHEKAL, YURIY A. ABRAMOV, PAUL A. MEENAN, MARK J. HENSON, BING SHI, ROBERT A. SINGER, KEITH R. HORSPOOL

Pharmaceutical Sciences, Pfizer Global Research & Development, Groton, Connecticut 06340

Received 19 February 2010; revised 21 April 2010; accepted 22 April 2010

Published online 22 June 2010 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jps.22230

ABSTRACT: Elucidation of the most stable form of an active pharmaceutical ingredient (API) is a critical step in the development process. Polymorph screening for an API with a complex polymorphic profile can present a significant challenge. The presented case illustrates an extensively polymorphic compound with an additional propensity for forming stable solvates. In all, 5 anhydrous forms and 66 solvated forms have been discovered. After early polymorph screening using common techniques yielded mostly solvates and failed to uncover several key anhydrous forms, it became necessary to devise new approaches based on an advanced understanding of crystal structure and conformational relationships between forms. With the aid of this analysis, two screening approaches were devised which targeted high-temperature desolvation as a means to increase conformational populations and enhance overall probability of anhydrous form production. Application of these targeted approaches, comprising over 100 experiments, produced only the known anhydrous forms, without appearance of any new forms. The development of these screens was a critical and alternative approach to circumvent solvation issues associated with more conventional screening methods. The results provided confidence that the current development form was the most stable polymorph, with a low likelihood for the existence of a more-stable anhydrous form. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3874-3886, 2010

**Keywords:** axitinib; polymorphism; polymorph screen; crystallization; desolvation; computational chemistry; crystal structure

## INTRODUCTION

Polymorphism can be thought of as the state in which a solid chemical compound exists in more than one crystalline form<sup>1</sup> with only one polymorph being the thermodynamically most stable form at a specific temperature and pressure. This phenomenon is very common to most pharmaceutical APIs. It is well known that polymorphs of the same substance can have dramatic differences in pertinent pharmaceutical properties, such as solubility and stability that can often have a significant impact on bioavailability and overall drug product performance. A number of excellent texts on polymorphism and their influence on pharmaceutical development are available.<sup>2</sup> Thus,

Correspondence to: Anthony M. Campeta (Telephone: 860-441-5844; fax: 860-715-2454; E-mail: anthony.m.campeta@pfizer.com) Journal of Pharmaceutical Sciences, Vol. 99, 3874–3886 (2010) © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

identifying the most appropriate solid form, typically the thermodynamically stable form, is a key element in the early developmental process for a new drug candidate. In regard to polymorph screening approaches, there are many common techniques employed that are designed to typically uncover all metastable and low-energy polymorphic forms. These include, for example, crystallizations through solvent evaporations, antisolvent crystallizations, slow and fast cooling of saturated API solutions to induce precipitation, and slurrying of solid API for extended periods of time.<sup>3</sup> A significant number of solvents and cosolvents of varying polarity and chemical composition are usually employed, while variable temperatures are also incorporated in the design to assess enantiotropic behavior. These approaches have been incorporated into our practices for polymorph screening and are typical throughout the pharmaceutical industry.

In most cases, a thoroughly designed API form screen employing the approaches previously discussed should typically identify the thermodynamically stable polymorph. However, there are numerous



Additional Supporting Information may be found in the online version of this article.

Mark J. Henson's present address is Molecular Biometrics, Inc., New Haven, CT 06511.

exceptions in the literature<sup>4,5</sup> that describe the appearance of a lower energy form at late stages in development. In these cases, common polymorph screening approaches were clearly unsuccessful, as unique physical and structural properties of the molecule hindered the anticipated cascade to the most stable form based on Ostwald's rule.<sup>6</sup> In this article, we describe another such example.

Axitinib (Fig. 1) is an oncology candidate under development at Pfizer. This API targets the vascular endothelial growth factor (VEGF) to prevent the growth and proliferation of cancer cells via interruption of tumor angiogenesis (formation of vascular supply tissue).<sup>7</sup> This compound has shown considerable promise in the treatment of carcinomas in a number of target tissues and organs and is currently in late stage clinical development.<sup>8</sup>

Understanding the polymorphism of axitinib has been a subject of considerable focus and effort, which we have initially reported.<sup>9</sup> In this work, polymorph investigations using the traditional approaches previously mentioned, which incorporated well over 300 experiments, identified a surprisingly high total of 23 unique solid forms. Distinction of these forms was assigned on the basis of powder X-ray diffraction (PXRD) patterns and thermal characteristics such as melting onset, melting enthalpy, and desolvation temperatures. This group of solid forms included three anhydrous forms with the remainder solvates (refer to Tab. 1). The anhydrous form IV was characterized as a robust developmental form with acceptable solid-state properties and was advanced for early clinical studies.

It was apparent that axitinib had a high tendency to form solvates. There was some question whether certain polymorph screening approaches may be challenged by this phenomenon, and the risk of not observing critical anhydrous forms (of which three had been already discovered) could exist. In particular, axitinib had a propensity to form relatively stable solvated structures, as a majority of these solvates were characterized as possessing relatively high temperatures of desolvation (desolvation temperatures significantly higher than the normal

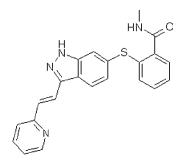



Figure 1. Structure of axitinib.

Table 1. Summary of Axitinib Solid Forms

| Name                              | Form               | Solvent                                                             |
|-----------------------------------|--------------------|---------------------------------------------------------------------|
| Form I (1)                        | Anhydrate          | _                                                                   |
| Form II (2)                       | Hydrate            | Water                                                               |
| Form III (3)                      | Solvate            | Ethyl acetate (EtOAc)                                               |
| Form IV (4)                       | Anhydrate          |                                                                     |
| Form V (5)                        |                    | lo solid form designation                                           |
| Form VI (6)                       | Anhydrate          |                                                                     |
| Form VII (7)                      | Solvate            | Isopropyl alcohol (IPA),                                            |
| Form VIII (9)                     | Solvate            | IPA/water                                                           |
| Form VIII (8)<br>Form IX (9)      | Hydrate            | Dioxane, tetrahydrofuran (THF<br>Water                              |
| Form X $(10)$                     | Solvate            | Dimethylformamide (DMF),                                            |
|                                   | Solvate            | DMF/water                                                           |
| Form XI (11)                      | Solvate            | THF/water, THF                                                      |
| Form XII (12)                     | Solvate            | Dichloromethane (DCM),                                              |
|                                   |                    | ethanol (EtOH)                                                      |
| Form XIII (13)                    | Solvate            | Acetonitrile (ACN)                                                  |
| Form XIV (14)                     | Solvate            | Acetic acid                                                         |
| Form XV (15)                      | Solvate            | EtOH                                                                |
| Form XVI (16)                     | Solvate            | IPA                                                                 |
| Form XVII (17)                    | Solvate            | Acetone                                                             |
| Form XVIII (18)                   | Solvate            | Methylisobutyl ketone (MIBK)                                        |
| Form XIX (19)                     | Solvate            | Methylethyl ketone (MEK)                                            |
| Form XX (20)<br>Form XXI (21)     | Solvate<br>Solvate | Methyl benzoate                                                     |
| Form XXII (21)                    | Solvate            | 2,2,2-CF <sub>3</sub> CH <sub>2</sub> OH/ether/hexane<br>1-Pentanol |
| Form XXIII (22)                   | Solvate            | Pyridine                                                            |
| Form XXIV (24)                    | Solvate            | Chloroform                                                          |
| Form XXV (25)                     | Anhydrate          |                                                                     |
| Form XXVI (26)                    | Solvate            | THF/water, THF                                                      |
| Form XXVII (27)                   | Solvate            | Dimethylsulfoxide (DMSO)                                            |
| Form XXVIII (28)                  | Solvate            | Benzyl alcohol                                                      |
| Form XXIX (29)                    | Solvate            | Trichloroethylene                                                   |
| Form XXX (30)                     | Solvate            | Dimethylformamide                                                   |
|                                   |                    | (DMF)/octanol (1:1)                                                 |
| Form XXXI (31)                    | Solvate            | Octanol                                                             |
| Form XXXII (32)                   | Solvate            | Methanol                                                            |
| Form XXXIII (33)                  | Solvate            | 1-Butanol                                                           |
| Form XXXIV (34)<br>Form XXXV (35) | Solvate            | 3-Methyl-1-butanol                                                  |
| Form XXXVI (36)                   | Solvate<br>Solvate | MEK<br>Pyrrole/1-pentanol                                           |
| FOLIN AAAVI (50)                  | Solvate            | pyrrole/p-cymene                                                    |
| Form XXXVII (37)                  | Solvate            | Allyl alcohol                                                       |
| Form XXXVIII (38)                 | Solvate            | Pyrrole allyl alcohol                                               |
| Form XXXIX (39)                   | Solvate            | Acetic acid                                                         |
| Form XL (40)                      | Solvate            | EtOH                                                                |
| Form XLI (41)                     | Anhydrate          | —                                                                   |
| Form XLII (42)                    | Solvate            | 2-Butanol                                                           |
| Form XLIII (43)                   | Solvate            | 2-Methyl THF                                                        |
| Form XLIV (44)                    | Solvate            | 2-Methyl THF                                                        |
| Form XLV (45)                     | Solvate            | Toluene                                                             |
| Form XLVI (46)<br>Form XLVII (47) | Solvate            | N-Methylpyrrolidone                                                 |
| Form XLVII (47)                   | Solvate<br>Solvate | Isoamyl acetate<br>Methylcyclohexane                                |
| Form XLIX (49)                    | Solvate            | Cyclohexanone                                                       |
| Form L (50)                       | Solvate            | Cyclohexanone                                                       |
| Form LI (51)                      | Solvate            | 1,2-Dichloroethane                                                  |
| Form LII (52)                     | Solvate            | Propionic acid                                                      |
| Form LIII (53)                    | Solvate            | Tert-butanol                                                        |
| Form LIV (54)                     | Solvate            | Dimethoxymethane                                                    |
| Form LV (55)                      | Solvate            | 2-Pentanone                                                         |
| Form LVI (56)                     | Solvate            | Dimethyl acetate (DMA)                                              |
| Form LVII (57)                    | Solvate            | Nitromethane                                                        |
| Form LVIII (58)                   | Solvate            | 1,2,3,4-tetrahydronaphthalene                                       |
| Form LIX (59)                     | Solvate            | Tetramethylene sulfone                                              |
| Form LX (60)                      | Solvate            | Methyl acetate                                                      |
| Form LXI (61)<br>Form LXII (62)   | Solvate<br>Solvate | <i>p-</i> Xylene<br>Trichloroothylono                               |
| Form LXII (62)<br>Form LXIII (63) | Solvate            | Trichloroethylene<br><i>n</i> -Butyl acetate                        |
| Form LXIV (64)                    | Solvate            | Isobutyl alcohol                                                    |
| Form LXV (65)                     | Solvate            | Cyclohexanol                                                        |
| Form LXVI (66)                    | Solvate            | Isopropyl acetate                                                   |
| Form LXVIII (67)                  | Solvate            | <i>p</i> -Cymene/pyrrole (1:1)                                      |
| Form LXIX (68)                    | Solvate            | <i>t</i> -Amyl alcohol                                              |
| Form LXX (69)                     | Solvate            | 4-Methyl-2-pentanone                                                |
| Form LXXI (70)                    | Solvate            | Cyclohexane                                                         |
|                                   |                    |                                                                     |
| Form LXXII (71)                   | Solvate            | 1,2-Dichlorobenzene                                                 |

Download English Version:

https://daneshyari.com/en/article/2486751

Download Persian Version:

https://daneshyari.com/article/2486751

Daneshyari.com