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Abstract

Industrial production of antibiotics, biopharmaceuticals and enzymes is typically carried out via a batch or fed-batch fermentation process. These
processes go through various phases based on sequential substrate uptake, growth and product formation, which require monitoring due to the
potential batch-to-batch variability. The phase shifts can be identified directly by measuring the concentrations of substrates and products or by
morphological examinations under microscope. However, such measurements are cumbersome to obtain. We present a method to identify phase
transitions in batch fermentation using readily available online measurements. Our approach is based on Dynamic Principal Component Analysis
(DPCA), a multivariate statistical approach that can model the dynamics of non-stationary processes. Phase-transitions in fermentation produce
distinct patterns in the DPCA scores, which can be identified as singular points. We illustrate the application of the method to detect transitions such
as the onset of exponential growth phase, substrate exhaustion and substrate switching for rifamycin B fermentation batches. Further, we analyze
the loading vectors of DPCA model to illustrate the mechanism by which the statistical model accounts for process dynamics. The approach can be
readily applied to other industrially important processes and may have implications in online monitoring of fermentation batches in a production
facility.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Fermentation processes have innumerable applications in
food, agrochemical and pharmaceutical industries. For safety
and health reasons, fermentation products are subjected to strin-
gent regulatory standard (de Noronha Pissarra, 2004). Further,
the cost-competitive nature of such products demands an opti-

Abbreviations: Glc, glucose; DSF, defatted soybean flour; CSL, corn steep
liquor; AMS, ammonium sulfate; DPCA, dynamic principal component analy-
sis; SP, singular point; PC, principal component; PLS, partial least square
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mal operation of the process (Nielsen, 1998; Nissen et al., 2000;
Olsson et al., 1998; Vara et al., 2002). Therefore, fermenta-
tion process supervision is of particular importance to ensure
consistent operation and thereby achieve high quality products.
Industrial fermentation is typically carried out in batch or fed-
batch mode to overcome the limitations of carbon and nitrogen
catabolite repression (Bapat et al., 2006b). The key challenges
in the monitoring of fermentation processes are batch-to-batch
variation and complex dynamics. The batch-to-batch variation
may result from the variation in the raw material quality or the
variations in the seed culture. The variables that are desired to
be monitored and controlled may include the biomass or prod-
uct concentration(s). These variables are typically available only
via offline measurements. Online measurements that are readily
available include pH, temperature, agitation speed, dissolved
oxygen, and exhaust CO2, and O2. However, these measure-
ments do not give direct information on the state of the process
(Vaidyanathan et al., 1999).
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Industrial fermentations typically use a multi-substrate
complex medium, which may result in sequential and/or simulta-
neous utilization of the available substrates (Bapat et al., 2006a;
Bapat and Wangikar, 2004). The metabolism in each phase is
different and hence deserves its own consideration in terms of
modeling, and supervisory control strategy (Konstantinov and
Yoshida, 1989; Muthuswamy and Srinivasan, 2003). In addition,
it is desirable to minimize offline sampling and the concomitant
risk of contamination, yet obtain sufficient information on nutri-
ent uptake and product formation in real time. As a result, online
identification of phases and phase shifts in complex media is of
critical importance.

The recently published methods for the identification of
phase shift via online measurements have required the quan-
titative evaluation of key components such as the biomass
concentration. Consequently these methods require advanced
sensors such as infrared/mass spectrometers (Feng and Glassey,
2000; Grube et al., 2002), electronic nose (Bachinger and
Mandenius, 2001; Pinheiro et al., 2002), or calorimetric sen-
sors (Voisard et al., 2002). In addition, these methods suffer
from the disadvantage that extensive time and experience are
often required to implement them. Further, the low signal-to-
noise ratio (Schugerl, 2001) and specific requirements of aseptic
conditions (Clementschitsch and Bayer, 2006) of such sensors
has limited their application in large-scale industrial processes.
Another class of methods has focused on utilizing the routinely
available online data for qualitatively identifying fermentation
phases. Qualitative trend analysis and expert system are the
two most common methods belonging to this class. A formal
framework for deducing process trends from the online process
variables was developed (Cheung and Stephanopoulos, 1990)
and applied to fermentation data (Stephanopoulos et al., 1997).
Alternatively, (Srinivasan et al., 2004) proposed a clustering
approach using similarity factor derived from dynamic prin-
cipal component analysis for process state identification. The
approach relied on identifying the steady states to locate and sub-
sequently segment historical data into different process phases.
Consequently, it is not readily applicable in batch fermentation
processes, where steady states do not normally exist. An expert
system uses process knowledge gathered from experts such as
biochemical engineers, biochemists, and microbiologists and
coded in forms of “if–then” rules. These rules may be crisp
or based on fuzzy logic (Kamimura et al., 1996). However, the
limitation of expert system technique is that it is system-specific
and difficult to customize for different fermentation processes
(Venkatasubramanian et al., 2003).

Here, we present a method for the detection of phase shifts in
batch fermentation via dynamic principal component analysis
(DPCA) of the online measurements. We illustrate the appli-
cation of the method for rifamycin B fermentation. Rifamycin
B is a polyketide antibiotic from ansamycin family with a pro-
nounced anti-mycobacterial activity and is extensively used in
clinical treatment of tuberculosis, leprosy and AIDS-related
mycobacterial infections (Sepkowitz et al., 1995). Further, we
analyze the DPCA model in terms of the loading vectors in an
attempt to understand the mechanism by which the DPCA model
uses the process history.

2. Materials and methods

2.1. Experimental methods

2.1.1. Strain and fermentation medium
Prof. Heinz Floss (Washington University, USA) kindly

donated the rifamycin B overproducing strain of Amycolatop-
sis mediterranei S699 that does not require barbital (Yu et al.,
2001). The preculture was propagated as described by (Kim et
al., 1996). One hundred and fifty milliliters of pre culture (10%,
v/v) was used to inoculate the bioreactor. The media contained
(per liter of distilled water) glucose, 80 g; potassium phosphate,
1 g; magnesium sulphate, 1 g; ferrous sulfate, 1 g; zinc sulfate,
0.010 g; cobalt chloride, 0.0030 g. In addition, the medium con-
tained one or more of the following: ammonium sulfate, 4 g;
potassium nitrate, 5.1 g; defatted soybean flour (DSF), 8 g; corn
steep liquor solids (CSL), 8 g. After adjusting the pH to 7.0
with 1 N sodium hydroxide, the fermentor was sterilized by
autoclaving at 121 ◦C for 15 min.

2.1.2. Bioreactor and cultivation conditions
Batch cultivations were conducted in 6.5-l BIOSTAT® B

(BBI; B. Braun Biotech International, Schwarzenberger, Ger-
many) bioreactor at working volume of 1.50 l at 28 ◦C. The
pH and the dissolved oxygen (pO2) were recorded by using
autoclavable pH-electrode and polarographic pO2-electrode
(INGOLD, USA), respectively. Agitator speed was used as a
control variable to maintain dissolved oxygen at 40% via cas-
cade control. Mass flow controller (BBI, Germany) was used to
supply a constant airflow of 1.0 vvm (volume of air per minute
per volume of media). The concentration of O2 and CO2 in the
exit gas stream from the bioreactor were measured by infrared
spectroscopy and paramagnetic analysis, respectively (Analyzer
BINOS1002M® with sample conditioning unit, Rosemount ana-
lytical, Germany).

2.1.3. Analytical techniques
Samples were drawn from the fermentation medium at regu-

lar intervals to analyze the dry cell weight and the concentrations
of glucose, ammonium sulfate, free amino acids and rifamycin
B as described previously (Bapat et al., 2006a). Glucose was
analyzed via RI detector on HPLC (Hitachi, Merck KgaA,
Darmstadt, Germany) using HP-Aminex-87-H column (Biorad,
Hercules, CA, USA) at 60 ◦C. The concentration of free amino
acids was estimated via the ninhydrin method (Moore, 1968).
The concentrations of the ammonium and nitrate ions were
determined by the respective ion specific electrodes (EA940 Ion
analyzer, Thermo Orion, USA). Rifamycin B was detected on
spectrophotometer (V-540, Jasco, Tokyo, Japan) at a wavelength
of 425 nm.

2.2. Data analysis methods

2.2.1. Principal component analysis
Principal component analysis (PCA) is a linear dimension-

ality reduction technique, which is optimal in capturing the
variance in the data. It determines a set of orthogonal vectors,



Download	English	Version:

https://daneshyari.com/en/article/24944

Download	Persian	Version:

https://daneshyari.com/article/24944

Daneshyari.com

https://daneshyari.com/en/article/24944
https://daneshyari.com/article/24944
https://daneshyari.com/

