

Available online at www.sciencedirect.com



**Phytomedicine** 

Phytomedicine 15 (2008) 321-326

www.elsevier.de/phymed

# Anti-inflammatory activities of triterpenoid saponins from *Polygala japonica*

H. Wang<sup>a,b</sup>, J. Gao<sup>a</sup>, J. Kou<sup>a</sup>, D. Zhu<sup>a,\*</sup>, B. Yu<sup>a</sup>

<sup>a</sup>Department of Traditional Chinese Prescription, China Pharmaceutical University, Box C-09, No. 1 Shennong Road, Nanjing 210038, PR China <sup>b</sup>Nanjing University of Traditional Chinese Medicine, 210029, PR China

## Abstract

Bioassay-guided investigation was performed to identify the active constituents from a methanol extract of *Polygala japonica*, a folk medicinal plant widely used in China to treat inflammatory diseases. The *n*-BuOH and EtOAc fractions of the *P. japonica* methanol extract, which show significant anti-inflammatory activity in *in vivo* test, were further subjected to column chromatography to afford six triterpene glycosides, marked here as saponins **1–6**. All compounds were evaluated for their anti-inflammatory activity in the carageenan-induced mouse paw edema test, and saponins **1, 4** and **5** showed significantly anti-inflammatory effects on both phases of carageenan-induced acute paw edema in mice. Saponin **5** was also found to significantly inhibit the production of inflammatory mediators – nitric oxide (NO) in LPS-stimulated RAW264.7 macrophages, with no obvious effects on macrophage viability.

Keywords: Polygala japonica; Polygalaceae; Triterpenoid saponins; Anti-inflammatory activity

## Introduction

*Polygala japonica* Houtt (Polygalaceae, Gua-zi-jin in Chinese) is widely distributed in Asia, especially in Eastern China. It has long history of using *P. japonica* in traditional medicine for the treatment of various inflammatory disorders, such as acute tonsillitis, pharyngitis, myelitis and nephritis (Liu and Li, 1998; Teng and Teng, 1994; Wan et al., 1997). Previous chemical studies have reported triterpenoid saponins, flavones isolated from *Polygala japonica* (Fang and Yin, 1989; Keun et al., 1993; Zhang et al., 1995a, b, 1996a, b; Li et al., 2006). However, no report has yet been published on the isolation and identification of anti-inflammatory bioactive chemical constituents from the plant. Our

\*Corresponding author. Tel./fax: +862585391042. *E-mail address:* danizhu@163.com (D. Zhu). preliminary test has confirmed the anti-inflammation activity of MeOH extract of *Polygala japonica* in carageenan-induced rat paw edema. In this article, we extended our efforts to isolate and identify the bioactive compounds from MeOH extract. We report herein the anti-inflammatory activities of isolated triterpene glycosides on carageenan-induced mouse paw edema and nitric oxide (NO) production in LPS-stimulated RAW264.7 macrophages, which may support the wide utility of *Polygala japonica* in traditional medicine of China.

## Materials and methods

#### **Plant materials**

The aerial part of *Polygala japonica* was purchased from Jiangsu Medical Material Company (Jiangsu,

<sup>0944-7113/\$ -</sup> see front matter © 2007 Elsevier GmbH. All rights reserved. doi:10.1016/j.phymed.2007.09.014

China), and was authenticated as *Polygala japonica* Houtt by Dr. Zenglai Xu (Jiangsu Zhongshan Arboretum, Nanjing, China). A voucher specimen (ZDN020518) has been deposited at the Herbarium of China Pharmaceutical University.

#### Extraction, isolation and identification

The dried aerial part of the plant (9 kg) was extracted with methanol for 12h and evaporated to dryness in vacuo to yield a total (MeOH ext., 1651 g, yield 18.34%). About 95% of the total extract was suspended in water, then subjected to liquid-liquid partition by adding petroleum ether, ethyl acetate and n-butanol successively, yielding three fractions, i.e., a petroleum ether fraction (MSO fr., 148.0 g, yield 1.73%), an ethyl acetate fraction (EtOAc fr., 1103.6 g, yield 12.9%) and an n-butanol fraction (n-BuOH fr., 108.28 g, yield 1.27%). The residual part that suspended in water was the water residue fraction (water fr., 42.29 g, yield 0.49%). The EtOAc fraction (103.6g) was further fractionated via silica gel CC, using a gradient of  $CHCl_3/MeOH (100/0 \text{ to } 0/100)$ . Frs. [64-75] = IV eluted with CHCl<sub>3</sub>/MeOH (8/1) were purified on a reversedphase RP18 CC using a gradient of MeOH/H<sub>2</sub>O (8/2 to 9/1) to yield bayogenin-3-O- $\beta$ -D-glucopyranoside (saponin 5, 15 mg). Frs. [76-81] = V eluted with CHCl<sub>3</sub>/ MeOH (5/1) was purified on a reversed-phase RP18 column using a gradient of MeOH/H<sub>2</sub>O (7/3 to 9/1) to vield tenuifolin (saponin 6, 11 mg). The n-BuOH fraction (58.28 g) was fractionated on silica gel CC, using a gradient of CHCl<sub>3</sub>/MeOH (100/4 to 0/100). Frs. [76-83] = F eluted with CHCl<sub>3</sub>/MeOH (3/1) were purified on a reversed-phase RP18 column using a gradient of MeOH/H<sub>2</sub>O (6/4 to 8/2) to yield 3-O- $\beta$ -Dglucopyranosyl bayogenin  $28-O-\beta$ -D-xylopyranosyl  $(1 \rightarrow 4)$ - $\alpha$ -L-rhamnopyranosyl  $(1 \rightarrow 2)$ - $\beta$ -D-glucopyranosyl ester (saponin 1, 25 mg) and 3-O- $\beta$ -D-glucopyranosyl medicagenic acid 28-O-{ $\beta$ -D-xylopyranosyl (1  $\rightarrow$  4)- $[\beta$ -D-apiofuranosyl  $(1 \rightarrow 3)$ ]- $\alpha$ -L-rhamnopyranosyl  $(1 \rightarrow 2)$ - $\beta$ -D-glucopyranosyl} ester (saponin 2, 36 mg). Frs [92-97] = J eluted with CHCl<sub>3</sub>/MeOH (2/1) was purified on a reversed-phase RP18 CC using a gradient of MeOH/H<sub>2</sub>O (5/5 to 7/3) to give 3-O- $\beta$ -D-glucopyranosyl 2-oxo-olean-12-en-23,28-dioic acid 28-O-{\$\beta\$-D-xylopyranosyl  $(1 \rightarrow 4) - [\beta - D - apiofuranosyl(1 \rightarrow 3)] - \alpha - L - rhamno$ pyranosyl  $(1 \rightarrow 2)$ - $\beta$ -D-glucopyranosyl} ester (saponin 3, 27 mg) and polygalasaponin V (saponin 4, 30 mg) (see structures in Fig. 1).

#### Spectroscopy and chromatography

<sup>1</sup>H and <sup>13</sup>C-NMR spectra were recorded at 500 and 125 MHz, respectively, using an AV-500 spectrometer in  $C_5D_5N$  with TMS as internal standard. HRESI-MS was

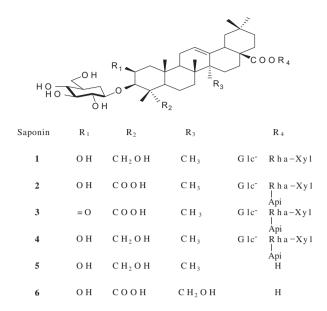



Fig. 1. Structures of isolated triterpene glycosides 1-6.

performed on an IonSpec4.7 Tesla mass spectrometer, ESI-MS and MS-MS experiments were recorded on a LC-MSD-Trap mass spectrometer. TLC was carried out on silica gel 60  $F_{254}$ , and spots were visualized by spraying with 10%H<sub>2</sub>SO<sub>4</sub> solution followed by heating. Silica gel (silica gel 60, Merck) and RP-18 (40–75 µm, Merck) were used for column chromatography. HPLC was performed on a Shimadzu apparatus equipped with a LC-10AT pump, an Alltech ELSD 500 detector and a Class VP software using carbohydrate analysis column (Cosmosil, 4.6 × 250 mm, 5 µm), 90 °C drift tube temperature, CH<sub>3</sub>CN–H<sub>2</sub>O (85:15) as solvent with a flow rate of 1 ml/min.

### Chemicals

Lipopolysaccharide (LPS), carageenan, 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and the reference drug indomethacin were purchased from Sigma Chemical Co. (St. Louis, MO, USA); RPMI 1640 medium and Newborn bovine serum were from Gibco BRL, Life Technologies, Inc. (New York, USA); and other chemicals were from Shanghai Chemical Company (Shanghai, China).

#### Cell culture and sample treatment

RAW 264.7, a murine macrophage cell line, was obtained at passage 4 from Shanghai Institute of Biochemistry and Cell Biology. Cells were cultured at 37 °C in Dulbecco's Modified Eagle Medium (DMEM) containing 10% heat-inactivated fetal bovine serum (FBS), penicillin (100 units/ml), and streptomycin sulfate (100  $\mu$ g/ml) in a humidified atmosphere of 5% CO<sub>2</sub>. The medium was changed about once a day and

Download English Version:

https://daneshyari.com/en/article/2498021

Download Persian Version:

https://daneshyari.com/article/2498021

Daneshyari.com