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A B S T R A C T

P-glycoprotein (P-gp), an ATP-binding cassette (ABC) multidrug transporter, can actively transport a
broad spectrum of chemically diverse substrates out of cells and is heavily involved in multidrug
resistance (MDR) in tumors. So far, the multiple specific binding sites remain a major obstacle in
developing an efficient prediction method for P-gp substrates. Herein, emerging chemical pattern (ECP)
combined by hierarchical cluster analysis was utilized to predict P-gp substrates as well as their potential
binding sites. An optimal ECP model using only 3 descriptors was established with prediction accuracies
of 0.80, 0.81 and 0.74 for 803 training samples,120 test samples, and 179 independent validation samples,
respectively. Hierarchical cluster analysis (HCA) of the ECPs of P-gp substrates derived 2 distinct ECP
groups (ECPGs). Interestingly, HCA of the P-gp substrates based on ECP similarities also showed 2 distinct
classes, which happened to be dominated by the 2 ECPGs, respectively. In the light of available
experimental proofs and molecular docking results, the 2 distinct ECPGs were proved to be closely related
to the binding profiles of R- and H-site substrates, respectively. The present study demonstrates, for the
first time, a successful ECP model, which can not only accurately predict P-gp substrates, but also identify
their potential substrate-binding sites.

ã 2016 Elsevier B.V. All rights reserved.

1. Introduction

Multidrug resistance (MDR) is a major pitfall in effective
treatment of cancer, wherein chemotherapy drugs are undesirably
exported from target cells by membrane-embedded pumps
(Gottesman et al., 2002). P-glycoprotein (P-gp), one of the most
prevalent of these efflux pumps, belongs to the ATP-binding
cassette (ABC) superfamily of membrane transporters. This
transporter is a single polypeptide containing 1280 residues

encoded by ABCB1 gene, and is characterized by two homologous
halves with pseudo-2-fold molecular symmetry. Each half consists
of one transmembrane domain (TMD) responsible for substrate
translocation and one cytoplasmic nucleotide-binding domain
(NBD) for ATP binding and hydrolysis. P-gp can pump a wide range
of structurally diverse anticancer drugs out of cells in an ATP-
dependent manner (Eckford and Sharom, 2009). Thus, over-
expression of P-gp in cancer cells seriously reduces intracellular
concentrations of most chemotherapeutics and impairs
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bioavailability. Hence, an efficient method for accurately predict-
ing P-gp substrates is crucial for designing chemotherapeutics with
good bioavailability.

To date, the binding profiles of P-gp substrates have not been
fully understood, mainly due to substrate promiscuity and
multiple substrate-binding sites (SBSs) in P-gp transmembrane
domain. Shapiro and Ling proposed the existence of at least two
SBSs, i.e., H-site and R-site registered for Hoechst 33342 and
rhodamine-123, respectively (Shapiro and Ling, 1997b). According
to their research, Hoechst 33342, quercetin, and colchicine would
preferentially bind to H-site, while rhodamine-123, doxorubicin,
daunorubicin, and other anthracyclines R-site. Other researches
also declared that there are at least two main SBSs for P-gp
substrates (Chufan et al., 2013; Dey et al., 1997; Loo et al., 2003a,b;
Loo and Clarke, 1999; Martin et al., 2000; Pleban et al., 2005;
Shapiro et al., 1999).

Over the past few decades, in silico quantitative structure-
activity relationship (QSAR) models have been intensively
proposed to predict P-gp substrates (Bikadi et al., 2011; Broccatelli,
2012; Crivori et al., 2006; de Cerqueira Lima et al., 2006; Desai
et al., 2013; Gombar et al., 2004; Hammann et al., 2009; Huang
et al., 2007; Levatic et al., 2013; Li et al., 2014a; Poongavanam et al.,
2012; Schwaha and Ecker, 2011; Wang et al., 2005, 2011; Xue et al.,
2004). There is general agreement that molecular weight or
volume (Bikadi et al., 2011; Levatic et al., 2013), number of
hydrogen acceptors (Desai et al., 2013; Li et al., 2014a), polar
surface area (Desai et al., 2013), molecular shape (Broccatelli, 2012;
Schwaha and Ecker, 2011), polarizability (Bikadi et al., 2011), and
hydrophobicity (Broccatelli, 2012; Crivori et al., 2006; Wang et al.,
2011) are important for substrate binding.

Although the available QSAR models have shown good
predictive performances, there are many obvious drawbacks or
limitations. Firstly, the sizes of datasets are generally quite small,
which results in limited coverage of chemical space and poor
extrapolabilities of resulting models. Secondly, the transport
activities of P-gp substrates are often measured by different
experimental methods, and many methods, e.g., ATPase and
calcein-AM, even have intrinsic biases, which lead to the lack of
confidence and often conflicting results. For example, doxorubicin
classified as a P-gp substrate (Gottesman et al., 2002; Mechetner
et al., 1998), was determined as a nonsubstrate in Polli’s work (Polli
et al., 2001). Thirdly, regression-based QSAR methods are
inappropriate in many cases, where P-gp substrates tend to bind
to different sites. Lastly, the available models often lack interpret-
abilities, due to the complexities of QSAR approaches.

Recently, emerging pattern (EP) has been introduced in
chemoinformatics as a powerful tool for compound classification,
especially when a few positive samples are available. Emerging
pattern (EP) approach is a machine learning methodology
developed in computer science to identify class-specific feature
patterns for label prediction (Dong and Li, 1999; Dong et al., 1999;
Li et al., 2000, 2001). This method was subsequently adopted in
bioinformatics to predict gene expression patterns (Li and Wong,
2002), and then introduced in chemoinformatics termed as
emerging chemical pattern (ECP) for compound classification
(Auer and Bajorath, 2006, 2008b; Namasivayam et al., 2014, 2013a,
b; Pan et al., 2014; Sherhod et al., 2012, 2014), and conformation
analysis (Auer and Bajorath, 2008a).

In this study, ECP modeling combined by hierarchical cluster
analysis (HCA) was successfully applied to predict and characterize
P-gp substrates potentially bound to different sites. The results
showed that ECP method can capture the subtle structural
differences between P-gp substrates and nonsubstrates, and the
resulting ECP model can not only accurately predict P-gp
substrates, but also identify their different binding profiles and
binding sites. The prediction results of the ECP model were further

proved to be consistent with the experimental and molecular
docking results. Taken together, this paper provided a promising
all-in-one ECP model for predicting P-gp substrates as well as
substrate-binding sites.

2. Materials and methods

2.1. Dataset

P-gp substrates and nonsubstrates were extracted from a
dataset published by Levatic et al. (2013). In brief, Levatic et al.
(2013) correlated expression levels of P-gp mRNA with cytotoxicity
activities of �13,000 compounds against 60 human cancer cell
lines. The ‘substrate’ and ‘nonsubstrate’ classes were created
according to two independent criteria: ‘difference’ and ‘correla-
tion’ criterion. After a strict process of sample screening, a dataset
of 934 samples (448 substrates and 486 nonsubstrates) was
constructed (Levatic et al., 2013). To the best of our knowledge, this
is the largest publicly available dataset for in silico researches. The
structures of all compounds in SMILES format are freely available
for download at http://pgp.biozyne.com.

In this paper, 11 metal-containing samples (7 substrates and
4 nonsubstrates) were removed from the original dataset
(Table S1 in Supporting Information). Then, the remaining
923 samples (441 P-gp substrates and 482 nonsubstrates) were
divided into training and test sets in accordance with literature
(Levatic et al., 2013). The training set including 803 samples
(386 substrates and 417 nonsubstrates, substrates/nonsubsrates =
0.93) was used for ECP modeling. The test set including
120 samples (55 substrates and 65 nonsubstrates, substrates/
nonsubsrates = 0.85) was used for model validation.

In addition, an independent validation dataset collected from
Broccatelli’s work (Broccatelli, 2012) was used to further validate
the performance of the derived models. After removing duplicated
structures to the above dataset, 179 qualified samples were
obtained, comprising 72 substrates and 107 nonsubstrates
(Table S2 in Supporting Information).

2.2. Structural description and feature selection

After removing counterions and adding hydrogens, all mole-
cules were optimized by MMFF94 force field (Sybyl 8.1, http://
www.tripos.com). The optimal conformation of each sample was
then used for structural description by PreADMET (version 2.0,
http://preadmet.bmdrc.org). A total of 140 descriptors were
calculated for each sample, including atom and bond counts,
physicochemical, electronic, pharmacophoric and molecular sur-
face properties. After removing the descriptors with lower
variances, 89 descriptors were retained for feature selection by
backward logistic regression, of which the entry and removal
probability were set to 0.05 and 0.1, respectively.

2.3. Emerging chemical patterns

2.3.1. ECP concept
To derive an ECP classifier, a continuous descriptor must be

firstly discretized into intervals, which generates a set of
descriptor-value pairs. Here, the value is a numerical interval into
which the descriptor falls. A subset of all available descriptor-value
pairs can be considered as a chemical pattern. The frequency of a
pattern x in a training set D is defined as the support of x in D
(Eq. (1)), abbreviated suppD (x).

suppDðxÞ ¼ countD xð Þ
jDj ð1Þ
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