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a  b  s  t  r  a  c  t

The  general  equation  is  derived  for the  equilibrium  of  a small  solid  particle  and  a  large  solution,  being
consistent  with  the  thermodynamics  of Gibbs.  This  equation  can  be  solved  in  a  closed  form  for  solubility
if  an  ideal  (or  an  infinitely  diluted)  solution  is  considered,  if  the  interfacial  energy  is independent  of the
composition  of  the  solution  and if  all  physical  parameters  (other  than  the  solubility  itself)  are  taken  size
independent.  The  solubility  of  the  particles  is  found  to  increase  with  increasing  its specific  surface  area,
i.e.  if non-spherical  particles  are  applied.  This  simplified  solution  further  simplifies  if the  shape  of  the
solid  is  supposed  to be spherical.  This  latter  equation,  however,  is found  to  be  in contradiction  with  the
Ostwald–Freundlich  equation,  widely  used  in chemistry,  biology  and  materials  science  to  describe  the
size  dependence  of  solubility  of  a spherical  crystal.  The  reason  for its  incorrectness  is  shown  to  be  due  to
the incorrect  application  of the  Laplace  equation.  It is  found  that the  solubility  increases  with  decreasing
the  size  of  the dissolving  phase  not  due  to the  increased  curvature  of  the  phase  (Kelvin  and  Freundlich),
but  rather  due  to  the  increased  specific  surface  area  of  the  phase  (Gibss,  Ostwald).  Equations  are  also
derived  for  the  case,  when  the size  effect  of the  interfacial  energy  is  taken  into  account,  and  when  the
crystal  is  surrounded  by  several  planes  of  different  interfacial  energies.  The  role  of wettability  is  discussed
on the  size  dependence  of solubility.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Probably the first paper on the size dependence of solubility
of solid particles in liquid solutions is due to Ostwald (1900).  His
derivation is based on the thermodynamics of Gibbs (1875–1878)
and is applicable to the solubility of a spherical solid particle in a
large liquid solution:

xA(�) = xo
A(�) · exp

(
3 · Vo

A(�) · �o
�/�

R · T · r�

)
(1a)

where xA(�) is the solubility of component A (mole fraction) in the
form of a spherical, pure phase � of radius r� (m)  in a given solution
� at temperature T (K) and at a fixed pressure p (Pa), xo

A(�) is the
same of an infinitely large phase �, �o

�/� is the interfacial energy

(J/m2) between the two phases (supposed to be size independent),
Vo

A(�) is the molar volume (m3/mol) of the pure phase A(�),  and
R = 8.3145 J/(mol K), the universal gas constant. Using the analogy of
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the Kelvin equation (under the name Thomson, 1871), the Ostwald
equation was quite soon corrected by Freundlich (1909) as:

xA(�) = xo
A(�) · exp

(
2 · Vo

A(�) · �o
�/�

R · T · r�

)
(1b)

Since then, Eq. (1b) has become widely accepted and is called
today as the Ostwald–Freundlich equation. According to Google
Scholar, more than 400 papers refer to this equation under this
name. Its usage accelerated during the recent years, as follows
from Fig. 1. Except the year of 1999, the yearly number of papers
mentioning the Ostwald–Freundlich equation was below 10 before
2005, while it started to increase in an unexpected way  during
the last 5 years. Although the equation is used time to time in
chemistry (Wu and Nancollas, 1998; McCoy, 2001; Cherginets et al.,
2002, 2010; Godec et al., 2009; Bouzid et al., 2011; Deflorian et al.,
2011), physics (Letellier et al., 2007; Shchekin and Rusanov, 2008),
materials science (Znaidi, 2010; Chiang and Sankaran, 2012), envi-
ronmental sciences (Mudunkotuwa and Grassian, 2011; Bian et al.,
2011) and nano-sciences (Ravichandran, 2010; Picher et al., 2011;
Dodd and Saunders, 2011), the boom of its usage is due to its appli-
cation in pharmaceutical nanotechnology (Müller et al., 2001; Nagy
et al., 2012; Liu et al., 2012). Only in the 2010–2011 issues of this
journal 9 papers are published citing the Ostwald–Freundlich equa-
tion (Cerdeira et al., 2010; Deng et al., 2010; Pardeike and Müller,
2010; Keck, 2010; Gao et al., 2011; Jiang et al., 2011; Kawabata et al.,
2011; Pardeike et al., 2011).
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Fig. 1. The number of papers published yearly during the last 20 years, containing
the  expression “Ostwald–Freundlich” (according to Google Scholar, searched on 26
December, 2011).

One can see that Eqs. (1a) and (1b) differ from each other only by
a numerical coefficient. However, behind this small qualitative dif-
ference, a quantitative difference between different approaches are
hidden, as recently shown by Kaptay (2012a) for the vapor pressure
of small droplets. In this paper the equation for the size and shape
dependence of the solubility of small solid particles is described,
based on the thermodynamics of Gibbs. In this context, the validity
of Eqs. (1a) and (1b) will be discussed.

2. Derivation of the general equation

Let us consider component A in the form of a pure, solid phase
� of any size and shape in an infinitely large solution � of any
nature and number of components (including component A), at
fixed temperature and pressure. The task is to derive a general
equation to describe the solubility of A in �. Thus, we search
for an equation for the equilibrium mole fraction of component
A in solution � (xA(�)), which keeps equilibrium with the solid
phase A(�)  of the given size and shape at given temperature and
pressure.

The size and shape of the pure solid phase � is described by its
volume V� (m3) and by its total surface area A� (m2). In the first
approximation we consider that the interfacial energy is identical
along the total interfacial area of the phase (for the correction, see
below). Thus, the specific surface area of this phase � (AS,�, 1/m), is
defined as:

AS,� ≡ A�

V�
(2)

According to Gibbs (1875–1878), the condition of equilibrium
between phases � and � is the equality of their partial Gibbs ener-
gies. In our particular case, the standard Gibbs energy of pure phase
A(�)  (denoted as Go

A(�),S, J/mol, where subscript “S” refers to the
given specific surface area AS,�) and the partial Gibbs energy of
component A in the solution phase � (GA(�), J/mol) should equal:

Go
A(�),S = GA(�) (3)

According to the theory of solutions (Lewis, 1907; Kaptay, 2004,
2012b; Lukas et al., 2007), the partial Gibbs energy of component
A in solution � can be written as:

GA(�) = Go
A(�) + R · T · ln xA(�) + �GE

A(�) (4)

where Go
A(�) is the standard Gibbs energy of component A in the

pure phase � (J/mol) (being the function of only T and p), �GE
A(�)

is the partial excess Gibbs energy of component A in solution �
(J/mol), being a difficult function of xA(�), T and p. The (molar)
standard Gibbs energy of pure phase A(�)  of the given specific

surface area can be written as (for the derivation of this equation,
see Appendix A):

Go
A(�),S = Go

A(�) + AS,� · Vo
A(�) · �o

�/� (5)

where Go
A(�) is the standard Gibbs energy of component A in the

pure phase � (J/mol) (being the function of only T and p). Substi-
tuting Eqs. (4) and (5) into Eq. (3):

Go
A(�) + AS,� · Vo

A(�) · �o
�/� = Go

A(�) + R · T · ln xA(�) + �GE
A(�) (6)

The requested solubility (xA(�)) is found by solving Eq. (6).  This
solution has a mathematically closed form only in simplified cases.

3. A simplified solution to Eq. (6)

Now, let us suppose that solution � is an ideal solution, at least,
from the point of view of component A.1 Thus, its excess partial
Gibbs energy will be zero, by definition. Also, let us suppose that the
interfacial energy �o

�/� is independent on the composition of phase

�, i.e. can be taken as a constant parameter. Then, the solubility (i.e.
the equilibrium mole fraction) of component A in phase � can be
expressed from Eq. (6) as:

xA(�) = exp

(
Go

A(�) − Go
A(�) + AS,� · Vo

A(�) · �o
�/�

R · T

)
(7)

Let us express from Eq. (7) the solubility of a large phase, with
negligible specific surface area (i.e. large size):

xo
A(�) = exp

(
Go

A(�) − Go
A(�)

R · T

)
(8)

Substituting Eq. (8) into Eq. (7),  the final equation for the solu-
bility is obtained as:

xA(�) = xo
A(�) · exp

(
AS,� · Vo

A(�) · �o
�/�

R · T

)
(9)

Let us mention that Eq. (9) is valid only, if Go
A(�), Vo

A(�) and �o
�/�

are not size dependent. As follows from Eq. (9),  the larger is the
specific surface area of the particle, the larger is its solubility. Thus,
the smaller is the particle, or the more its shape deviates from that
of a sphere, the higher is its solubility.

For a spherical particle of radius r�, the specific surface area
equals: AS,� = 3/r�. Substituting this value into Eq. (9),  the following
particular expression is obtained:

xA(�) = xo
A(�) · exp

(
3 · Vo

A(�) · �o
�/�

R · T · r�

)
(10)

Eq. (10) is obtained exactly under the same conditions as the
Ostwald equation (1a) or as the Freundlich equation (1b). From the
comparison of Eqs. (1a), (1b) and (10) one can see that our solution
coincides with that of Ostwald. It is not surprising as both equations
are derived using the thermodynamics of Gibbs.

Although the difference between Eqs. (1a), (10) and (1b) is only
in a numerical coefficient 2 vs. 3, behind this quantitative differ-
ence a qualitative difference is hidden. The present author believes
that the derivation of Eqs. (6), (9) and (10), presented in this paper,
are free of contradictions. The reason why the Freundlich equation
(and the Kelvin equation in its roots) contradicts the thermody-
namics of Gibbs is explained in Appendix B. From the comparison
of the present derivation with that, presented in Appendix B, the
following qualitative difference follows:

1 The same results of Eqs. (9), (10) and (13) are obtained, when solution � is real,
but is infinitely diluted in component A (as in this case the solution is also quasi-ideal
from the point of view of component A).
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