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a b s t r a c t

Needle-shaped crystals are a common occurrence in many pharmaceutical and fine chemicals processes.
Even if the particle size distribution (PSD) obtained in a crystallization step can be controlled by the crystal
growth kinetics and hydrodynamic conditions, further fluid–solid separation steps such as filtration, filter
washing, drying, and subsequent solids handling can often lead to uncontrolled changes in the PSD due to
breakage. In this contribution we present a combined computational and experimental methodology for
determining the breakage kernel and the daughter distribution functions of needle-shaped crystals, and
for population balance modeling of their breakage. A discrete element model (DEM) of needle-shaped
particle breakage was first used in order to find out the appropriate types of the breakage kernel and the
daughter distribution functions. A population balance model of breakage was then formulated and used in
conjunction with experimental data in order to determine the material-specific parameters appearing in
the breakage functions. Quantitative agreement between simulation and experiment has been obtained.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Needle-shaped crystals (crystals with a large aspect ratio)
are commonly encountered in pharmaceutical processes. While
the particle size distribution (PSD) can nowadays be controlled
relatively precisely in the crystallization step by adjusting the
supersaturation, seeding, and hydrodynamic conditions in the crys-
tallizer (Yu et al., 2007), further downstream fluid-solid separation
steps such as filtration, filter washing, drying, and subsequent
solids handling can often lead to uncontrolled changes in the PSD
due to attrition and breakage (Müller et al., 2006; Kalman, 2000).
The effect of breakage on the particle size distribution can be
described by population balances (Hill and Ng, 1997; Kostoglou,
2007). For population balance models of breakage to be effec-
tive, two material- and stress-field specific functions need to be
known: the breakage kernel (selection function) and the daughter
distribution function (breakage function) (Austin, 1971; Kelly and
Spottiswood, 1990). The breakage kernel determines the breakage
rate of particles from each size fraction, while the daughter distri-
bution function describes the size distribution of daughter particles
(fragments) that are formed once a particle of a given size does
break.

Although methodologies for experimental determination of the
breakage kernel and daughter distribution functions are known
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(Gupta et al., 1981), they either require a relatively large number of
experiments or the solution of an inverse problem (Sathyagal et al.,
1995). An alternative approach is based on trying to determine the
functions theoretically (Hill, 2004) or computationally by detailed
mechanistic modeling of the breakage of single particles (Khanal
et al., 2005) or particle ensembles (Bobet et al., 2009; Ketterhagen
et al., 2008). Grof et al. (2007) recently demonstrated the feasibility
of detailed numerical simulation of the breakage of needle-shaped
particles within a random packed bed subjected to uni-directional
compaction, using the discrete element method (DEM). Elongated
particles with a chosen aspect ratio have been created by linking
individual spherical discrete elements by rigid bonds, characterized
by a given bending stiffness and ultimate bending strength. A ran-
domly packed bed of these elongated particles has been formed and
gradually compressed between two infinite parallel solid planes.
The particle size distribution as a function of the compaction ratio
has been studied while systematically varying the individual par-
ticle strength, the initial particle length, and its distribution.

The aim of the present work is to develop and validate a novel
methodology for the determination of the breakage kernel and
daughter distribution functions, based on the combination of com-
putational and experimental techniques. The methodology consists
of four parts: (i) the DEM simulation of needle-shaped particle
breakage under uni-axial compaction as described in (Grof et al.,
2007); (ii) post-processing of the DEM simulation outputs using
population balance models and explicit evaluation of the appro-
priate types of the breakage functions; (iii) experimental study
of the breakage of real needle-shaped crystals under uni-axial
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Nomenclature

a compression parameter (dimensionless)
A die cross-section area (m2)
C span of Gaussian function (dimensionless)
E specific energy input (J/kg)
F compaction force (N)
f(y) compression function (m s−2)
g(F) alternative form of compression function (m/kg)
h bed height (m)
k(Li) breakage kernel (kg/J)
k0 breakage constant (dimensionless)
Li length of a crystal from the ith size class (m)
L0 characteristic length (m)
m sample mass (kg)
N number of size classes (dimensionless)
ni number concentration of crystals from the ith size

class (kg−1)
P compaction pressure (Pa)
ri breakage rate (J−1)
Sm(Li) breakage probability (dimensionless)
U objective function (kg−2)
y relative piston position (dimensionless)
z piston travel distance (m)

Greek letters
ˇ(i, j) daughter distribution function (dimensionless)
ˇ′(x) transformed (universal) daughter distribution func-

tion (dimensionless)
� breakage exponent (dimensionless)

compaction; (iv) fitting of the population balance models to the
experimental data and evaluation of the material-specific parame-
ters in the breakage functions.

2. Population balance model

When applying the rigorous population balance model (Vanni,
2000) to needle-shaped crystals we assume that the crystals are lin-
ear aggregates of primary particles (or “monomers”) of equal size.
Such a description is consistent with the multi-element particle
model (Favier et al., 1999; Grof et al., 2007) used for the repre-
sentation of elongated (needle-shaped) particles or crystals. This
assumption makes it possible to correlate the length Li of a crystal
with the number of primary particles i that form it as:

Li ≈ i. (1)

The particle size distribution is then a discrete function, whose
values ni, i = 1, . . ., N are the number concentrations of the particles
consisting of i monomers and N is the number of size classes.

Theoretical treatments of Weichert (1992), Fuerstenau et al.
(1996, 2004), lead to expressing the population balance equations
for the breakage under uni-axial compression in terms of the spe-
cific energy expended rather than in grinding time as follows

dni

dE
= −ri +

N∑
j=i+1

ˇijrj. (2)

The first term on the right side of Eq. (2) is the rate of death of
particles i to generate smaller fragments, while the second one is
the birth of particles i due to rupture of larger particles.

The specific energy input E can be equated with the work of
compression per unit feed mass (Fuerstenau et al., 1996)

E ≈ APz

m
= Fz

m
, (3)

where A is the die cross-sectional area, P is the compaction pres-
sure, F is the compaction force, m is the sample mass which is
proportional to the initial bed height

m ≈ h0 (4)

and z is the piston travel distance which may be expressed in terms
of h0 and h, the initial and instantaneous bed heights

z = h0 − h. (5)

Kawakita and Lüdde (1971) listed 15 equations of compaction
that relate pressure with volume (or bed height). For example the
Kawakita piston compression equation has the form

z

m
≈ y = h0 − h

h0
= abP

1 + bP
= acF

1 + cF
(6)

or

P = y

b(a − y)
, (7)

where y is the degree of volume reduction (or relative piston posi-
tion) and a and b are parameters characterizing the powder. The
parameter a is equal to the initial porosity in the case of piston
compression. By combining relations (3)–(7) and lumping all pro-
portionality constants, the specific energy may be expressed as

E ≈ Py ≈ y2

a − y
(8)

and consequently

dE ≈ 2ay − y2

(a − y)2
dy = f (y) dy. (9)

Breakup is usually a first order process with respect to particle
concentration, since it generally depends on the local stress field
acting on the particles. It is convenient to express the death rate as

ri = k(Li)ni, (10)

where k(Li) is the breakage kernel. There is a strong dependence of
the breakage kernel on particle size, Li. Different breakage kernels
are summarized in (Vanni, 2000; Rajniak et al., 2008).

Finally, introducing (9) and (10) into the rigorous population
balances (2) and lumping different proportionality factors together
we get the population balance equations in terms of the relative
piston position y

dni

dy
= −f (y)k(Li)ni +

N∑
j=i+1

ˇijf (y)k(Lj)nj (11)

with f(y) defined by Eq. (9).
There exist many different fragment (daughter) distribution

functions ˇij defining the number of daughter fragments in class i
produced upon breakup of a mother particle j (Vanni, 2000; Rajniak
et al., 2008). Here we have considered only the formation of two
fragments during every breakage event, i.e. corresponding binary
breakage distribution functions are normalized with respect to con-
dition (12)

j−1∑
i=1

ˇij = 2. (12)



Download English Version:

https://daneshyari.com/en/article/2503751

Download Persian Version:

https://daneshyari.com/article/2503751

Daneshyari.com

https://daneshyari.com/en/article/2503751
https://daneshyari.com/article/2503751
https://daneshyari.com

