\$30 ELSEVIER

Contents lists available at ScienceDirect

International Journal of Pharmaceutics

journal homepage: www.elsevier.com/locate/ijpharm

Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate

Ghanshyam V. Joshi^a, Bhavesh D. Kevadiya^a, Hasmukh A. Patel^a, Hari C. Bajaj^{a,*}, Raksh V. Jasra^b

- ^a Discipline of Inorganic Materials and Catalysis, Central Salt and Marine Chemicals Research Institute (CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
- ^b R & D Centre, Reliance Industries Limited, Vadodara Manufacturing Division, Vadodara 391 346, Gujarat, India

ARTICLE INFO

Article history: Received 6 January 2009 Received in revised form 3 March 2009 Accepted 6 March 2009 Available online 19 March 2009

Keywords: Timolol maleate Montmorillonite Intercalation

ABSTRACT

The need for safe, therapeutically effective, and patient-compliant drug delivery systems continuously leads researchers to design novel tools and strategies. Clay minerals play a very crucial role in modulating drug delivery. This work examines the advantageous effect of clay mineral as drug carrier for timolol maleate (TM), a nonselective β -adrenergic blocking agent. The intercalation of TM into the interlayer of montmorillonite (MMT) at different pH and initial concentration is demonstrated. MMT–TM hybrid was characterized by X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), and thermal analysis (TG-DTA). TM was successfully intercalated into the interlayer of MMT, and in vitro release properties of the intercalated TM have been investigated in simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 7.4) at 37 \pm 0.5 °C. Controlled release of TM from MMT–TM hybrid has been observed during in vitro release experiments.

© 2009 Published by Elsevier B.V.

1. Introduction

Timolol maleate (TM), S-(-)-1-[(tert-butylamino)-3-(4-morpholino-1,2,5-thiadiazol-3-yl)oxy]-2-propanol maleate (Fig. 1) is a nonselective β -adrenergic blocking agent. Timolol is effective against hypertension, arrhythmias, and angina pectoris, as well as for the secondary prevention of myocardial infarction (Turkdemir et al., 2001).

Montmorillonite (MMT) clay is one of the smectite group, composed of silica tetrahedral sheets layered between an alumina octahedral sheets. The imperfection of the crystal lattice and the isomorphous substitution induce a net negative charge that leads to the adsorption of alkaline earth metal ions in the interlayer space. Such imperfection is responsible for the activity and exchange reactions with organic compounds. MMT also contains dangling hydroxyl end-groups on the surfaces (Khalil et al., 2005). MMT has large specific surface area; exhibits good adsorb ability, cation exchange capacity, standout adhesive ability, and drug-carrying capability. Thus, MMT is a common ingredient as both the excipient and active substance in pharmaceutical products (Wang et al., 2008). The intercalation of organic species into layered inorganic solids provides a useful and convenient route to prepare organic–inorganic hybrids that contain properties of both the inor-

In recent years, smectite clays intercalated by drug molecules have attracted great interest from researchers since they exhibit novel physical and chemical properties. Zheng et al. (2007) have investigated the intercalation of ibuprofen into MMT as a sustained release drug carrier. Lin et al. (2002) studied the intercalation of 5-fluorouracil with MMT as drug carrier. Fejer et al. (2001) reported intercalation and release behavior of promethazine chloride and buformin hydrochloride from MMT. Nunes et al. (2007) studied the loading and delivery of sertraline using MMT K10. Dong and Feng (2005) synthesized the poly(p,L-lactide-co-glycolide)-MMT nanoparticles by the emulsion/solvent evaporation method for oral delivery of paclitaxel.

The present paper focused on the intercalation of TM into the interlayer of MMT under different reaction conditions, such as pH and initial concentration of TM. The MMT–TM hybrid was characterized by XRD, FT-IR, and TG-DTA. Release profile of TM from MMT–TM hybrid was carried out by taking TM encapsulated in MMT in the dialysis membrane tubing, and the dialysis bag was suspended in 500 ml vessel containing 300 ml simulated gastric and intestinal fluid.

2. Experimental

2.1. Materials

Timolol maleate was purchased from Sigma–Aldrich, USA. HCl, KCl, KH₂PO₄, NaCl, and NaOH were purchased from S. D. Fine Chem-

ganic host and organic guest in a single material (Mohanambe and Vasudevan, 2005).

^{*} Corresponding author. Tel.: +91 278 2471793; fax: +91 278 2567562. E-mail address: hcbajaj@csmcri.org (H.C. Bajaj).

Fig. 1. Chemical structure of timolol maleate.

icals, India and were used as received. The MMT rich bentonite clay was collected from Akli mines, Barmer district, Rajasthan, India. De-ionized water was obtained from Milli-Q Gradient A10 water purification system.

2.2. Purification of MMT

To obtain MMT in Na-form, 300 g of raw bentonite was dispersed in 31 of 0.1 M NaCl solution, stirred for 12 h and centrifuged. The above procedure was repeated thrice. Finally, the slurry was centrifuged and washed with de-ionized water until free from chloride ion as tested by AgNO3 solution (Bergaya et al., 2006). Na-MMT was purified by sedimentation technique as described earlier (Patel et al., 2007a), according to the Stokes law of sedimentation. The purified MMT was obtained by dispersing 150 g of Na-MMT in 101 de-ionized water and collecting the supernatant dispersion of particles <2 μ m after the pre-calculated time (10 h) and height (15 cm) at 30 °C. The Na-MMT slurry was dried at 100 °C and ground to pass through 200 mesh sieve (ASTM). The cation exchange capacity (CEC) of MMT was measured by the standard ammonium acetate method at pH 7 (Bergaya et al., 2006), and was 91 mequiv./100 g of MMT on dry basis (dried at 110 °C).

2.3. Intercalation kinetics

The experiments were performed to optimize the time required for maximum intercalation of TM into the interlayer of MMT. 30 ml aqueous solution of TM containing 31 mg of TM was mixed with 100 mg of MMT powder for 1, 3, 7, 9, and 15 h at 30 °C in a 100 ml conical flask with continuous stirring. The reaction mixtures were filtered and concentration of TM in the filtrate was determined by UV–vis spectroscopy at λ_{max} = 294 nm.

2.4. Effect of pH

The experiments were performed to determine the optimum pH for intercalation of TM into the interlayer of MMT. For this purpose, TM and MMT mixture were treated at different pH at constant temperature, time, and concentration. 30 ml aqueous solution of TM containing 31 mg of TM was mixed with 100 mg of MMT powder at pH 2.2, 3.2, 4.4, 5.7, 7, 8.5, and 10.8 for optimized time of 1 h at 30 °C in a 100 ml conical flask with continuous stirring. The reaction mixtures were filtered and concentration of TM in the filtrate was determined by UV–vis spectroscopy at λ_{max} = 294 nm.

2.5. Initial TM concentration

To achieve maximum intercalation of TM into MMT, reactions were carried out at different initial concentration of TM at constant temperature, time, and pH. 30 ml aqueous solution of TM containing different initial amount of TM (5.1, 10.3, 15.5, 20.6, 25.7, 31.0, 42.0, 52.5, and 63 mg) were treated with 100 mg of MMT powder

for 1 h at pH 5.7 at 30 °C in a 100 ml conical flask with continuous stirring. The reaction mixtures were filtered and concentration of TM in the filtrate was determined by UV–vis spectroscopy at λ_{max} = 294 nm.

2.6. Characterization

X-ray diffraction (XRD) analysis was carried out with a Phillips powder diffractometer X' Pert MPD using PW3123/00 curved Ni-filtered Cu Kα (λ = 1.54056 Å) radiation with slow scan of 0.3°/s in 2θ range of 2–10°. Fourier transform infrared spectra (FT-IR) were measured with PerkinElmer, GX-FTIR as KBr pellet. Thermogravimetric analysis was carried out within 30–800°C at the rate 10°C/min in the nitrogen flow using Mettler-Toledo, TGA/SDTA 851e. UV–vis absorbance of TM solutions were measured using UV–vis spectrophotometer (Cary 500, Varian) equipped with a quartz cell having a path length of 1 cm. Release experiments were performed using Julabo shaking water bath (SW23).

2.7. Release of TM from MMT-TM hybrid

Buffer solution of pH 1.2 (simulated gastric fluid) was prepared by mixing 250 ml of 0.2 M HCl and 147 ml of 0.2 M KCl. Buffer solution of pH 7.4 (simulated intestinal fluid) was prepared by mixing 250 ml of 0.1 M KH₂PO₄ and 195.5 ml of 0.1 M NaOH. In vitro release studies were carried out in phosphate buffered saline media of pH 7.4 and simulated gastric fluid at pH 1.2 using the dialysis bag technique (Marchal-Heussler et al., 1990). Dialysis sacs were equilibrated with the dissolution medium for a few hours prior to experiments. 150 mg of MMT-TM hybrid in 5 ml of buffer solution was taken in the dialysis bag. Dialysis bag was dipped into receptor compartment containing 300 ml dissolution medium, which was shaked at 37 ± 0.5 °C in Julabo shaking water bath (SW23). The receptor compartment was closed to prevent the evaporation losses from the dissolution medium. The shaking frequency was kept at 100 rpm. 5 ml of sample was withdrawn at regular time intervals and the same volume was replaced with a fresh dissolution medium. Samples were analyzed for TM content by UV spectrophotometer at λ_{max} = 294 nm. These studies were performed in triplicate for each sample and the average values were used in data analysis.

3. Results and discussion

3.1. Intercalation kinetics

Intercalation of TM in MMT is very rapid process, due to occurrence of ion-exchange reaction between the interlayer Na⁺ ions and cationic TM molecules. 17% of TM was intercalated within 1 h of interaction time, which remained constant up to 15 h. Therefore, interaction time was set to 1 h to avoid the partial intercalation in the subsequent experiments.

3.2. Intercalation at different pH values

Fig. 2 shows the effect of pH on the intercalation of TM into the interlayer of MMT. The results of pH effect on the intercalation of TM in MMT in the pH range 3.2–8.5 were suggesting that intercalation of TM remains almost constant within experimental error. There was a sharp decrease in intercalation of TM in MMT, when the pH was above 8.5 and below 3.2. This can be explained based on p K_a value of TM. The p K_a of TM is \sim 9.4 (Martiĭnez et al., 2000; Kanikkannana et al., 2001), which implies that at pH \leq 7.4, the TM exists as mono charged cations due to protonation of the amine. Intercalation at pH 10.8 is only about 3.2%, due to largely uncharged

Download English Version:

https://daneshyari.com/en/article/2504818

Download Persian Version:

https://daneshyari.com/article/2504818

<u>Daneshyari.com</u>