

INTERNATIONAL JOURNAL OF PHARMACEUTICS

International Journal of Pharmaceutics 349 (2008) 166-171

www.elsevier.com/locate/ijpharm

Possibility of enterohepatic recycling of ketoprofen in dogs

Gladys E. Granero*, Gordon L. Amidon

Department of Pharmaceutical Science, University of Michigan, College of Pharmacy, Ann Arbor, MI 48109-1065, USA

Received 28 June 2007; received in revised form 25 July 2007; accepted 7 August 2007

Available online 11 August 2007

Abstract

Ketoprofen is mainly cleared by glucuronidation. The rate of glucuronidation of this compound has been demonstrated to be greater in dog than in human liver microsomes. Dog is the most common secondary nonprimate species used in drug metabolism studies in the pharmaceutical industry. Therefore, this study was undertaken to provide valuable information to pharmaceutical companies using dog as a model species for pharmacokinetic analyses when differences in glucuronidation occur across species for therapeutic drugs known to be extensively glucuronidated. The pharmacokinetics of ketoprofen was investigated after intravenous (0.27, 0.57 and 1.10 mg/kg) and oral administration of ketoprofen (\sim 10 mg/100 ml) of the racemate in dogs. Serial blood samples were collected at timed intervals for 7 and 24 h following intravenous and oral administration of the dose, respectively, and concentrations in plasma were determined by a sensitive and specific HPLC method. By comparing the AUC $_{0-\infty}$ following oral and intravenous administrations, ketoprofen bioavailability was \sim 100%. A possibility of enterohepatic cycling of ketoprofen in dogs was proposed because of multiple peak phenomenon in the concentration–time profiles after intravenous and oral dosing was observed.

Keywords: Ketoprofen; Enterohepatic circulation; Pharmacokinetics; Absorption

1. Introduction

Ketoprofen (2-(3-benzoylphenyl)-propionic acid), KET, is an effective inhibitor of cyclooxygenases and inhibits the synthesis of prostaglandins. Ketoprofen is clinically used in its racemic form in doses from 50 to 200 mg to treat rheumatic disorders and various non-rheumatic musculoskeletal joint diseases, and in lower doses from 12.5 to 25 mg, for mild to moderate pain and fever (Jamali and Brocks, 1990; Veys, 1991; Cashman, 1996; Brady et al., 1997). (*R*)-enantiomer was found to possess analgesic properties independent of prostaglandin synthesis inhibition (Wechter, 1998). In contrast to other arylpropionate derivatives, ketoprofen enantiomers undergo only limited chiral inversion (9–12%) in healthy subjects (Bannwarth et al., 1999).

In humans, ketoprofen follows a simple metabolic pathway (primarily glucuronidation) leading to the formation of an unstable glucuronic ester that is excreted in urine (Debruyne et al., 1987).

Drugs undergoing direct glucuronidation may be cleared more rapidly by dog liver than by human liver, possibly due to a greater efficiency/capacity of glucuronidation. Ketoprofen exhibits greater *in-vitro* CL_{int} ($V_{\rm max}/K_{\rm m}$) value in DLM (dog liver microsomes) (2.4 μ l/min/mg) compared with HLM (human liver microsomes) (0.2 μ l/min/mg). The greater CL_{int} value in DLM suggests that ketoprofen may be cleared more rapidly by dog liver than by human liver (Soars et al., 2001).

Traditionally, rodents such as the rat and nonprimate species such as the dog have been used as animal models in studies aimed at evaluating the pharmacodynamics, metabolism, pharmacokinetics and safety of new chemical entities.

Work carried out by other researches has shown that both ketoprofen enantiomers are extensively eliminated into the rat bile after their glucuronidation and thus, it is very probably also their intestinal reabsorption, suggesting the existence of enterohepatic circulation (EHC) of ketoprofen. Glucuronide of ketoprofen is hardly absorbed from the gastrointestinal tract, and the hydrolysis of the conjugate is needed before the reabsorption (as intact form) (Yasui et al., 1996).

The present study was undertaken to provide valuable information to pharmaceutical companies using dog as a model species for pharmacokinetic analyses when differences in glucuronidation occur across species for therapeutic drugs known to be extensively glucuronidated. Ketoprofen was administrated intravenously and orally to dogs at different doses, and the

^{*} Corresponding author.

E-mail address: glagra@fcq.unc.edu.ar (G.E. Granero).

pharmacokinetics was investigated. A possibility of enterohepatic cycling of ketoprofen in dogs was proposed because of multiple peak phenomenon in the concentration—time profiles after intravenous and oral dosing was observed.

2. Materials and methods

2.1. Chemicals

Racemic ketoprofen was purchased from Sigma Chemical Co. (St. Louis, MO). HPLC-grade solvents used for HPLC analysis were obtained from Fisher Scientific Co. (St. Louis, MO). All other chemicals were of analytical grade and were used as received.

2.2. Animal preparation

Four adult Mongrel dogs, ranging in weight from 18 to 36 kg body weights and in age from 2 to 7 years, of both sexes, were used for the study, which was approved by the University of Michigan Committee on Use and Care of Animals. A randomized crossover study design was implemented. Before each administration of ketoprofen, the animals were fasted for 20 h but had free access to water. On each occasion, the appropriate dose was administered and the washout period between applications was at least 1 week for each dog. During the study, the animals were restrained in a dog sling and the back and foreleg shaved.

2.3. Dosage forms

For intravenous applications, the dosing solution was prepared by dissolving the compound in a solvent mixture of polyethylene glycol-400 and bacteriostatic 0.9% sodium chloride inj., USP, at a ratio of 50:50 (v/v). The dosing volume was 2 ml per dog. To insure sterility, all intravenous solutions were filtered through a 0.45 μ m filter (Acrodisc® 13 GHP, Gelman Laboratory). For oral administration, the dosing solution of ketoprofen was prepared mixing \sim 10-mg of ketoprofen with 100 ml of HPLC-grade water. The accurate concentration of the aqueous solution of ketoprofen was determined, after filtering the suspension through a 0.45 μ m filter (Acrodisc® 13 GHP, Gelman Laboratory), by HPLC.

2.4. Pharmacokinetic studies

Pharmacokinetic parameters were calculated from plasma concentration—time data using KineticaTM 1.1 software. For intravenous applications, three-way crossover experimental design in which four dogs received a single intravenous dose of ketoprofen via the femoral vein, at 0.27, 0.57, or 1.10 mg/kg dose levels, was performed. There was at least a 1-week washout period between successive treatment periods. Blood samples (approximately 2 ml) were collected via an indwelling catheter into heparinized vaccutainer tubes (contralateral to the iv administration) at predose, and 0.02, 0.05, 0.08, 0.17, 0.25, 0.50, 0.75, 1.00, 1.25, 1.75, 2.00, 2.75, 3.00, 4.00, 5.00, 6.00 and 7.00 h post-

dosing. The catheter was flushed with heparinized saline after each blood draw. For oral applications, $100\,\mathrm{ml}$ of aqueous solution containing $\sim \! 10\,\mathrm{mg}$ of ketoprofen was given by esophageal tube; after the administration, the tube was rinsed with $20\,\mathrm{ml}$ of water. Blood samples (2 ml) were collected into heparinized vaccutainer tubes before and at 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 4.00, 5.00, 6.00, 7.00 and 24 h post-dose. Blood samples were taken from the femoral vein by means of an indwelling catheter. Twenty-four-hour samples were collected by individual venipuncture. Blood volume was replaced with normal saline. Plasma samples were separated by immediate centrifugation at 5000 rpm for $10\,\mathrm{min}$ at $-4\,^{\circ}\mathrm{C}$ and stored at $-20\,^{\circ}\mathrm{C}$ until the time of analysis.

2.5. Analytical method

2.5.1. Sample processing

Plasma samples were thawed at room temperature. To plasma aliquots (200- μ l) were added 200 μ l of acetonitrile to precipitate the proteins. The samples were then vortexed, centrifuged (16,000 rpm for 15 min at 4 °C); filtered through a 0.45 μ m filter (Acrodisc® 13 GHP, Gelman Laboratory) and 30 or 50 μ l of supernatant was injected and analyzed by HPLC.

2.5.2. Sample analysis

Ketoprofen was analyzed by an HPLC method. The chromatographic system consisted of a pump (model 501, Waters Associates, Milford, MA) operated at 1 ml/min. A sample processor (WISP Model 712, Waters Associates, Milford, MA), a variable wavelength UV detector (Spectroflow 783 Absorbance detector, Kratos analytical Instruments, Ramsy, NJ) set at 258 nm, connected to an integrator (HP 3396 Series II, HP Company, Avondale, PA). The mobile phase consisted of a mixture of acetonitrile and water, adjusted at pH 3.02 (35:65, v/v). The analytical column used was a LiChrospher® 100 RP-18 endcapped, 5 µm particle, size column (250 mm × 4.6 mm I.D.), preceded by a LiChroCART® guard column (4 mm × 4 mm) of the same packing material. The retention time of ketoprofen under these conditions was ~17 min. The standard reference curves were obtained by adding known amounts of diluted stock standard to drug-free plasma. The injection volumes were 30 or 50 µl. The method limit of detection (LOD) was calculated from the calibration curves, area versus concentration, according to LOD = $3.3 \delta/S$; with δ being the standard deviation of intercepts of regression line and S being the slope of the calibration curve. The limits of quantification, defined here as LOQ = $10 \delta/S$, were determined on the basis of standard deviation of the response and the slope. The LOD were 0.43 and 0.23 µg/ml for calibration curves with 30 and 50 µl injection volumes, respectively. The lower limits of quantification were 1.20 and 0.70 µg/ml for calibration curves with 30 and 50 µl injection volumes, respectively. Detector linearity was determined by linear regression analyses (model y = ax + b) of eight level calibration curves. Ranges of concentrations were $0.71-24 \mu g/ml$ ($r^2 = 0.999$; 30 μl injection volume) and $0.71-6.00 \,\mu\text{g/ml}$ ($r^2 = 0.998$; 50 μ l injection volume). During the assay of the study samples the intrabatch precision and

Download English Version:

https://daneshyari.com/en/article/2505814

Download Persian Version:

https://daneshyari.com/article/2505814

<u>Daneshyari.com</u>