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a b s t r a c t

An eight-node serendipity element free of shear locking and spurious zero-energy modes is formulated to
model laminated composite plate problems. The element is based on a first-order shear deformation the-
ory and on the equivalent lamina assumption. Stresses are calculated through the thickness of the plate.
As the model is only capable of representing transverse shear strains and stresses as constants, while
their actual variations are parabolic, a shear correction factor is used. The element is formulated using
strain gradient notation, which is a physically interpretable notation that allows for a detailed a-priori
analysis of the finite element model. The element’s shear strain polynomials are inspected, and the spu-
rious terms which are responsible for shear locking are identified. The element is corrected by simply
removing such spurious terms from those shear strain expansions. Further, the compatibility modes
are also clearly identified and maintained in the shear strain expansions in order to prevent the introduc-
tion of spurious zero-energy modes. Numerical results show the shear locking effects caused by the spu-
rious terms on displacement and transverse stress solutions. They also show that properly refined meshes
composed of corrected elements provide solutions which converge rather well for moderately thick to
thin plates.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Research on modeling and analysis of laminated composite
structures has been very active in at least the last four decades.
The concern to accurately represent the actual behavior of this kind
of structure has led researchers to develop analytical and numeri-
cal models every time more refined. Thorough reviews on theories
and finite element models for laminated composites have been
presented in the literature [1–4]. Carrera [5] discusses theories
for laminated composites in the perspective of the correct repre-
sentation of the continuity of the transverse displacement and
the equilibrium of interlaminar transverse stress components.
The author indicates that layerwise models are necessary for an
accurate evaluation of the normal transverse stresses. Another
work presents a review on the different methods, both analytical
and numerical, available for estimating transverse and interlami-
nar stresses in laminated composite plates and shells [6]. An early

attempt to formulate a finite element for laminated composites
made by Mawenya and Davies [7] resulted is an element based
on first-order shear deformation theory (FSDT) with rotations vary-
ing from layer to layer. Another early example is the work by Panda
and Natarajan [8] where it is presented an element based on the
eight-node degenerate shell developed by Ahmad et al. [9]. As
the first-order shear deformation theory is viewed as a limiting
theory in representing accurately the behavior of laminated com-
posites, several other works have proposed high-order deforma-
tion theories (HSDT) [10–14]. An overview of the relationships
between classical and shear deformation theories has been pre-
sented [15]. Computational models ranging from simple to refined
have been developed to perform numerical evaluation of all those
theories [14,16]. The concern with the development of accurate
laminated composite finite element models obviously has included
avoiding shear locking and other spurious mechanisms. Isopara-
metric elements require some form of reduced-order integration
of the stiffness matrix. Mawenya and Davies [7], for instance,
followed the recommendation of using a 2 � 2 Gaussian integra-
tion provided by Zienkiewicz et al. [17]. It was not known at the
time that such a strategy would not be very efficient as it would
be proved later by other researchers. The works of Hughes and
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co-workers with different plate elements shed light over the shear
locking problem as well as spurious zero-energy modes (rank defi-
ciency) and made significant progress in developing selective
reduced-integration procedures for isoparametric elements
[18–20]. However, as selective reduced integration of Lagrange
elements introduces spurious zero-energy modes, the Heterosis
element was devised to circumvent such problem at the expense
of a more complex formulation [21]. Alternative formulation pro-
cedures have been devised seeking the development of better plate
and shell elements. Among those we cite the field consistency
approach [22] and the mixed interpolation of tensorial compo-
nents [23]. Laminated composite shell elements have been devel-
oped using the latter [24]. Also, an approach of adding a shear
correction factor to transverse shear strain expressions developed
by Verwoerd and Kok [25] has been applied to three-node triangu-
lar laminated composite plate elements based on FSDT to suppress
shear locking effects [26]. Zhang and Yang [27] introduce triangu-
lar and quadrilateral plate and shell elements for linear and nonlin-
ear analysis of thin to moderately thick laminates. Such elements
are shear locking-free due to the use of Timoshenko’s beam func-
tions to represent deflections and rotations of the elements sides.
A C1 six-node triangle is developed using trigonometric functions
to represent transverse shear stresses. Polynomial orders for the
transverse displacement and for the rotations are selected such
that transverse shear strain compatibility is attained, thus avoiding
shear locking naturally [28]. Kim et al. [29] formulate a FSDT shell
element within the co-rotational framework for geometrically
nonlinear analysis. The ANS (Assumed Natural Strains) method is
employed, precluding shear locking effects, and thus allowing good
behavior for thin and thick problems. Further advances include lay-
erwise models [30], and elements based on Reddýs simple higher-
order shear deformation theory [31,32]. Moleiro et al. [33] develop
a layerwise finite element model based on a mixed least-squares
formulation which enables interlaminar continuity of displace-
ments and transverse stresses in the form of Co continuous func-
tions. Mantari and Guedes Soares [34] introduce a generalized
layerwise displacement-based HSDT and the corresponding finite
element in which the number of DOFs is limited for being indepen-
dent of the number of layers. Pandey and Pradyumna [35] present
a C� layerwise eight-node finite element model for three-layered
composite plates where first-order displacement fields are
assumed for the top and bottom layers while a higher-order dis-
placement field is assumed for the middle layer. Also, there are
contributions made using the Refined Zigzag Theory (RZT), which
has been presented by Tessler et al. [36] recently. RZT is based
on FSDT and employ piecewise-linear zigzag functions that provide
better representations of the deformations states of transverse
shear-flexible plates. Those authors [37] present two- and a
three-node beam elements that avoid shear locking effects by
employing anisoparametric interpolations to approximate the
kinematic variables that are necessary to model planar deforma-
tions. The same group [38], following the same line of the previous
referenced work, formulate RZT-based six- and three-node trian-
gular plate elements, which also employ shape functions based
on anisoparametric interpolations. Further, Eijo et al. [39] present
the formulation of an isoparametric four-node C� quadrilateral
plate element based on the RZT theory. Shear locking is avoided
by using an assumed linear strain shear field. Finally, another
approach is the one adopted by Natarajan et al. [40] which combi-
nes Carrera’s Unified Formulation (CUF) and the cell-based
smoothed finite element method. A four-node quadrilateral based
on the field consistency requirement is employed to eliminate
shear locking.

This paper describes the development of a FSDT-based eight-
node serendipity plate finite element using strain gradient nota-
tion and makes an assessment of its capabilities in the analysis

of laminated composite plate problems. Spurious terms which
are the cause of shear locking are identified and removed.

2. On the strain gradient notation

Strain gradient notation (Dow [41]) is a physically interpretable
notation which relates displacements to the kinematics quantities
of the continuum. It has been used as an alternative procedure for
formulating finite elements and also finite difference templates.
The relationships between displacements and the kinematics
quantities are derived through a procedure which identifies the
physical contents of the polynomial coefficients. An important fea-
ture of strain gradient notation is that the modeling characteristics
of the finite element become apparent to the developer since the
early steps of the formulation. This allows for the sources of mod-
eling errors to be identified and consequently removed from the
finite element shear strain polynomial expansions prior to the for-
mation of the element stiffness matrix. In this paper, sources of
shear locking (parasitic shear terms) are precisely identified and
removed from the shear strain polynomial expansions of the
eight-node serendipity plate element. Causes of spurious zero
energy modes are explained, and this deficiency is avoided by cor-
rectly eliminating shear locking. Parasitic or spurious shear terms
which are present in the shear strain polynomial expansions of
the serendipity plate element are identified by inspection. It is
demonstrated both theoretically that they are flexural terms which
cause locking of the model by increasing the element́s shear strain
energy unduly when the plate undergoes bending. Such terms are
then simply removed from the shear strain polynomials, avoiding
shear locking to occur. It is also demonstrated that spurious
zero-energy modes are not introduced into the model by recogniz-
ing and not removing the compatibility modes. Such modes can be
easily confused with shear locking terms and, therefore, be inad-
vertently removed. This is the limitation of reduced-order integra-
tion schemes in attempting to correct elements for locking. Along
with eliminating legitimate spurious terms which are responsible
for locking, those techniques also eliminate compatibility modes,
thus introducing spurious zero-energy modes. Hence, the use of
strain gradient notation has the advantages that locking is taken
care of correctly and a-priori of the formation of the stiffness
matrix and of the computer implementation, and that the formu-
lated element is of correct rank since no spurious zero-energy
modes are introduced. Formulation associated to strain gradient
notation is described in the next two sections.

3. First-order shear deformation theory

The kinematic relations according to the Reissner-Mindlin or
first-order plate theory may be written as follows:

uðx; y; zÞ ¼ uoðx; yÞ þ zhxðx; yÞ ð1Þ

vðx; y; zÞ ¼ voðx; yÞ � zhyðx; yÞ ð2Þ

wðx; yÞ ¼ w ð3Þ

hxðx; yÞ ¼ @uðx; y; zÞ
@z

ð4Þ

hyðx; yÞ ¼ � @vðx; y; zÞ
@z

ð5Þ

where u and v are in-plane displacements along the x and y direc-
tions, respectively, w is the out-of-plane (normal to the middle sur-
face) displacement, hx and hy are rotations in the x and y directions,
respectively (or around the y and x axes, respectively), and u0 and v0
are the middle surfacés in-plane displacements along the x and y
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