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a b s t r a c t

The purpose of the paper is to compute the dynamic behavior of functionally graded material (FGM) shell
structures subjected to time-varying excitation using 3D-shell model based on a discrete double directors
shell element. The third-order shear deformation theory is introduced in the present method to remove
the shear correction factor and improve the accuracy of transverse shear stresses. Material properties of
the shell are assumed to be graded in the thickness direction by varying the volume fraction of the cera-
mic and the metallic constituents using general four-parameter power-law distribution. The transient
excitation is defined in the time domain and known at each time. The damping material is neglected
and the time derivative is approximated by Newmark method. Numerical results for deflection and stres-
ses are presented for plates and spherical caps. The effect of an imposed force on the response of the FGM
shell is discussed. The numerical examples prove a good accuracy and reliability compared to the few
results available in literature.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The improved properties of composite materials have led to
their use in space and aerospace applications. However, the abrupt
change of the properties across the interface between different
materials in conventional composite materials causes high inter-
laminar stresses leading to delamination. In addition, large plastic
deformation at the interface may activate the initiation and the
propagation of cracks in the conventional composite material.
Functionally graded materials (FGMs), which are special kind of
composite with a gradual transition of material properties from
one material to another, are made to overcome the problems asso-
ciated to the discontinuity in conventional composite. The most
known FGMs are made of a transition alloys from metal at one sur-
face to ceramic at the opposite surface. This kind of FGMs was
introduced as ultra high temperature resistant materials for
nuclear reactor, chemical plants, heat engine components and
aerospace vehicles. The thermal resistance of FGM is due to low
thermal conductivity of ceramic [1,2].

The static behavior of FGM plates was studied in literature with
analytical and numerical methods. Thin FGM plate can be studied
by a classical plate theory [3,4]. For thick FG plates, some models
take into account the transverse shear effect by using the

First-order Shear Deformation Theory (FSDT) [5,6]. In the FSDT the-
ories, transverse shear is assumed to be constant through the shell
thickness and thus require the computation of shear correction
coefficients, [7–9]. In fact, shear correction coefficients are problem
dependent and cumbersome. This limitation of the FSDT forced the
development of High-Order Shear Deformation theory (HSDT)
which includes the consideration of realistic parabolic variation
of transverse shear stress through the shell thickness in the isotro-
pic cases. There is no need of a shear correction factor when using a
HSDT but equations of motion are more complicated to obtain than
those of the FSDT. The HSDT are introduced to develop a plate or
shell elements, [10–14] among authors. An other possibility to
introduce a HSDT is by using the enhanced assumed strain formu-
lation (EAS) in solid-shell elements with quadratic transverse shear
enhancement, [15,16]. Recently, a unified formulation developed
by Carrera and his co-workers (CUF), which can generate any
refined theory, is developed in static and free vibration for lami-
nate composites and FGM shells [17–21].

FGM shell structures are subjected to severe dynamic loads.
Therefore, an assessment of natural frequency and transient
response of structures seems required. Based on the Mindlin’s
first-order shear deformation theory, free vibration of functionally
graded plates and cylinder was investigated by Hosseini-Hashemi
et al. [22]. Using a discrete double directors shell element, free
vibration analysis of FGM shell structures was studied by Wali
et al. [12]. Based on layer-wise finite element, the dynamic
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response of functionally graded cylindrical shell was studied by
Yas et al. [23]. Using a refined 8-node shell element, a forced vibra-
tion of FGM to arbitrary loading is investigated in [24]. The tran-
sient response of FGM plate is analyzed by [5].

The objective of this work is to present a general formulation for
forced vibration of FGM shell using discrete double directors shell
model. The formulation is investigated for the transient response of
FGM shells. Square plate and spherical cap are used to compare the
accuracy of the formulation. Transient deflection and axial stress
are analyzed along the thickness.

2. Double directors shell model

In this section, the geometry and kinematic of double directors
shell model are described. The reference surface of the shell is
assumed to be smooth, continuous and differentiable. Variables
associated with the undeformed state will be denoted by upper-
case letters and by a lower-case letter when referred to the
deformed configuration.

2.1. Double directors shell kinematic assumption

Parameterizations, which define material points of the shell, are
carried out in terms of curvilinear coordinates n ¼ ðn1; n2; n3 ¼ zÞ.
The position vectors of any material point (q), whose normal pro-
jection on mid-surface is the material point (p), in the initial states
C0 are given by:

Xqðn1; n2; zÞ ¼ Xpðn1; n2Þ þ zDðn1; n2Þ; z 2 �h=2; h=2½ �; ð1Þ
where h is the thickness. Xp and D are respectively a point of the ref-
erence surface and the initial shell director. The covariant basis
(G1;G2;G3) is obtained from the position vector by (G1;G2;G3)=
(@Xq=@n

1; @Xq=@n
2; @Xq=@z), which yields in base vectors relative to

the initial state:

Ga ¼ Aa þ zD;a; G3 ¼ D; a ¼ 1;2: ð2Þ
The surface element dA in the initial state is given by:

dA ¼
ffiffiffi
A

p
dAn;

ffiffiffi
A

p
¼ A1 ^ A2k k; dAn ¼ dn1dn2: ð3Þ

The covariant reference metric tensor G at a material point n is
defined by:

G ¼ Gi � Gj
� �

; i; j ¼ 1;2;3: ð4Þ
For later use, the geometrical variable DetðGÞ and dV are related by

dV ¼ ffiffiðp GÞdn1dn2dz, where DetðGÞ ¼ ffiffiðp GÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gij

�� ��� �q
.

With the assumption of a double directors shell model, the posi-
tion vector of any point q, in the deformed configuration is given by
(show Fig. 1):

xqðn1; n2; zÞ ¼ xpðn1; n2Þ þ f 1ðzÞd1ðn1; n2Þ þ f 2ðzÞd2ðn1; n2Þ: ð5Þ
In the deformed state, the base vectors are:

ga ¼ aa þ f 1ðzÞd1;a þ f 2ðzÞd2;a; g3 ¼ f 01ðzÞd1 þ f 02ðzÞd2: ð6Þ
The metric tensor components in the deformed configuration Ct

are separated into the in-plane and out-of-plane part components.
With some approximations, the metric tensor can be written as:

gij ¼ gi � gj;

gab � aab þ f 1ðzÞb1
ab þ f 2ðzÞb2

ab

ga3 � f 01ðzÞc1a þ f 02ðzÞc2a
g33 � f 01 þ f 02

� �2
d

8>><>>: ð7Þ

where aab; b
k
ab and cka (k ¼ 1;2) represent the covariant metric sur-

face, the first curvature tensors and the shear, respectively. The
parameter d denotes the thickness stretching.

Taking into account d1 � d1 � d2 � d2 � d1 � d2, these components
can be computed as:

aab ¼ aa � ab; cka ¼ aa � dk; bk
ab ¼ aa � dk;b þ ab � dk;a;

d ¼ d1 � d1; k ¼ 1;2: ð8Þ
Similar expressions for the in-plane and out-of-plane compo-

nents of the metric tensor can be obtained in the case of the initial
configuration C0.

Using the kinematic assumption, Eq. (7), the linearized strains
can be written as follows [11,12]:

�ab ¼ eab þ f 1ðzÞv1
ab þ f 2ðzÞv2

ab

2�a3 ¼ f 01ðzÞc1a þ f 02ðzÞc2a

(
; a; b ¼ 1;2: ð9Þ

In matrix notation, the vectors of membrane, bending and shear
strains are given by:

e ¼
e11
e22
2e12

8><>:
9>=>;; vk ¼

vk
11

vk
22

2vk
12

8><>:
9>=>;; ck ¼ ck1

ck2

( )
; k ¼ 1;2: ð10Þ

The variation of the strain can be written, in the initial configu-
ration, as:

deab ¼ 1=2ðAa � dx;b þAb � dx;aÞ; dcka ¼Aa � ddk þ dx;a �dk

dvk
ab ¼ 1=2ðAa � ddk;b þAb � ddk;aþ dx;a �dk;b þ dx;b �dk;aÞ

(
; k¼ 1;2:

ð11Þ
Or in matrix notation:

de ¼ Bm � dx; dvk ¼ Bbmkdxþ Bbbkddk;

dck ¼ Bsmkdxþ Bsbkddk; k ¼ 1;2; ð12Þ
where the matrix differential operators, relative to the initial
configuration (Linear theory), are given by:

Bm ¼ Bbbk ¼
AT

1
@

@n1

AT
2

@

@n2

AT
1

@

@n2
þ AT

2
@

@n1

26664
37775; Bbmk ¼

d0T

k;1
@

@n1

d0T

k;2
@

@n2

d0T

k;1
@

@n2
þ d0T

k;2
@

@n1

266664
377775;

Bsmk ¼
d0T

k
@

@n1

d0T

k
@

@n2

264
375; Bsbk ¼

AT
1

AT
2

" #
; d0

k ¼ D; k ¼ 1;2:

ð13Þ

Fig. 1. Double directors shell model.
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