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a b s t r a c t

This paper proposes some advanced plate theories obtained by expanding the unknown displacement
variables along the thickness direction using trigonometric series, exponential functions and miscella-
neous polynomials. The used refined models are Equivalent Single Layer (ESL) theories. They are obtained
by means of the Unified Formulation by Carrera (CUF), and they accurately describe the displacement
field and the stress distributions along the thickness of the multilayered plate. The governing equations
are derived from the Principle of Virtual Displacement (PVD), and the Finite Element Method (FEM) is
employed to solve them. The plate element has nine nodes, and the Mixed Interpolation of Tensorial
Components (MITC) method is used to contrast the membrane and shear locking phenomenon. Cross-
ply plates with simply-supported edges and subjected to a bi-sinusoidal load, and sandwich plates with
simply-supported edges and subjected to a constant transverse uniform pressure are analyzed. Various
thickness ratios are considered. The results, obtained with different theories within CUF, are compared
with the elasticity solutions given in the literature and the layer-wise solution. It is shown that refined
kinematic theories employing trigonometric or exponential terms are able to accurately describe the dis-
placement field and the mechanical stress fields. In some cases, the reduction of computational costs is
particularly relevant respect to the layer-wise solution.

� 2016 Published by Elsevier Ltd.

1. Introduction

Composite plate/shell structures have a predominant role in
many engineering applications. Structural models for composite
plates must be able to deal with a number of physical effects such
as anisotropy, shear deformation and interlaminar continuity of
shear stress. Analytical, closed form solutions are available in very
few cases. In most of the practical problems, the solution demands
applications of approximated computational methods. The Finite
Element Method (FEM) has a predominant role among the compu-
tational techniques implemented for the analysis of layered struc-
tures. Finite elements are usually formulated on the basis of
axiomatic-type theories, in which the unknown variables are pos-
tulated along the thickness. According to published research, vari-
ous theories for composite structures have been developed. They
can be classified as: Equivalent Single Layer (ESL), in which the
number of unknowns is independent of the number of layers,

and Layer-wise approach (LW), in which the number of unknowns
is dependent on the number of layers. The simplest plate/shell the-
ory is based on the Kirchoff/Love’s hypothesis, and it is usually
referred to as Classical Lamination Theory (CLT) [1,2]. The inclusion
of transverse shear strains leads to the Reissner–Mindlin Theory,
also known as First-order Shear Deformation Theory (FSDT) [3]. A
review of Equivalent Single Layer and layer-wise laminate theories
was presented by Reddy [4]. Also, a large variety of plate/shell
finite element implementations of higher-order theories (HOT)
has been proposed in the last twenty years. HOT-type theories
were discussed by Kant and co-authors [5,6], by Reddy [7] and
Palazotto and Dennis [8].

Concerning trigonometric polynomial expansions, some plate
and beam theories have been developed. Shimpi and Ghugal [9]
used trigonometric terms in the displacements field for the analy-
sis of two layers composite beams. An ESL model was developed by
Arya et al. [10] using a sine term to represent the non-linear dis-
placement field across the thickness in symmetrically laminated
beams. An extension of [10] to composite plates was presented
by Ferreira et al. [11]. A trigonometric shear deformation theory
is used to model symmetric composite plates discretized by a
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meshless method based on global multiquadric radial basis func-
tions. A version of this theory, with a layer-wise approach, was
proposed by the same authors in [12]. Vidal and Polit [13] devel-
oped a new three-noded beam finite element for the analysis of
laminated beams, based on a sine distribution with layer refine-
ment. Recently, the same authors have dealt with the influence
of the Murakami’s zig–zag function in the sine model for static
and vibration analysis of laminated beams [14]. Static and free
vibration analysis of laminated shells were performed by radial
basis functions collocation, according to a sinusoidal shear defor-
mation theory in Ferreira et al. [15]. It accounts for through-the-
thickness deformation, by considering a sinusoidal evolution of
all displacements along the thickness coordinate. The complexity
of some structures often requires the adoption of 3D numerical
solutions to describe the mechanical behavior properly. The main
limitation of the 3D finite elements, which are implemented in
the commercial codes, is the significant computational cost when
large-scale structures are considered. Although advanced 3D finite
elements have been recently proposed to lessen this issue [16],
refined 1D and 2D elements still represent valuable tools for reduc-
ing the computational effort.

In this work, an improved plate finite element is presented for
the analysis of plate multilayered structures. It is based on the Car-
rera Unified Formulation (CUF), which was developed by Carrera
for multi-layered structures [17,18]. Within the CUF framework,
several beam models using trigonometric, exponential, hyperbolic
and miscellaneous series were employed [19,20]. A review of
Equivalent Single Layer and layer-wise laminate theories was pre-
sented in [21]. In the present work, a number of advanced ESL plate
theories, obtained by use of Taylor polynomials, trigonometric ser-
ies, and exponential functions, are discussed. The Mixed Interpola-
tion of Tensorial Components (MITC) method [22–24] is used to
contrast the membrane and shear locking. The governing equations
in weak form for the linear static analysis of composite structures
are derived from the Principle of Virtual Displacement (PVD), and
the Finite Element Method is used to solve them. Cross-ply plates
with simply-supported edges and subjected to a bi-sinusoidal load,
and sandwich plates with simply-supported edges and subjected
to a constant transverse uniform pressure are analyzed. The
results, obtained with the different models, are compared with
both exact solutions and higher-order theories solutions given in
literature.

This paper is organized as follows: geometrical and constitutive
relations for plates are presented in Section 2. In Section 3, an over-
view of classical, higher-order and advanced plate theories devel-
oped within the CUF framework is given. Section 4 gives a brief
outline of the FEM approach and the MITC9 method to overcome
the problem of shear locking, whereas, in Section 5, the governing
equations in weak form for the linear static analysis of composite
structures are derived from the PVD. In Section 6, the results
obtained using the proposed CUF theories are discussed. Section 7
is devoted to the conclusions.

2. Geometrical and constitutive relations for plates

Plates are bi-dimensional structures in which one dimension (in
general the thickness in the z direction) is negligible with respect
to the other two in-plane dimensions. The geometry and the refer-
ence system are indicated in Fig. 1. Geometrical relations enable to
express the in-plane �k

p and out-plane �k
n strains in terms of the dis-

placement u:

�k
p ¼ ½�kxx; �kyy; �kxy�

T ¼ ðDk
pÞuk; �k

n ¼ ½�kxz; �kyz; �kzz�
T ¼ ðDk

np þ Dk
nzÞuk:

ð1Þ

The explicit form of the introduced arrays of the differential opera-
tors is:
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The stress–strain relations are:
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For the sake of brevity, the expressions, that relate the material
coefficients Cij to the Young’s moduli E1; E2; E3, the shear moduli
G12;G13;G23 and Poisson moduli m12; m13; m23; m21; m31; m32 that char-
acterize the layer material, are not given here. They can be found
in [4].

3. Carrera Unified Formulation for plates

According to the CUF [18,25,26], the displacement field can be
written as follows:

uðx; y; zÞ ¼ F0ðzÞu0ðx; yÞ þ F1ðzÞu1ðx; yÞ þ � � � þ FNðzÞuNðx; yÞ;
vðx; y; zÞ ¼ F0ðzÞv0ðx; yÞ þ F1ðzÞv1ðx; yÞ þ � � � þ FNðzÞvNðx; yÞ;
wðx; y; zÞ ¼ F0ðzÞw0ðx; yÞ þ F1ðzÞw1ðx; yÞ þ � � � þ FNðzÞwNðx; yÞ:

8><
>:

ð5Þ
In compact form:

ukðx; y; zÞ ¼ FsðzÞuk
s ðx; yÞ; dukðx; y; zÞ ¼ FsðzÞduk

sðx; yÞ
s; s ¼ 0;1; . . . ;N; ð6Þ
where ðx; y; zÞ is the general reference system, see Fig. 1, and the dis-
placement vector u ¼ fu;v ;wg has its components expressed in this
system. du is the virtual displacement associated to the virtual work
and k identifies the layer. Fs and Fs are the thickness functions
depending only on z. us are the unknown variables depending on
the coordinates x and y. s and s are sum indexes and N is the num-
ber of terms of the expansion in the thickness direction assumed for
the displacements.
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Fig. 1. Reference system of the plate with a bi-sinusoidal loading.
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