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a b s t r a c t

Motivated by stress and strain distributions in the unit cell obtained by the finite element analysis, a ser-
ies–parallel mixture model is proposed to predict the overall property of particle reinforced composites.
In this model, the matrix (softer) phase is split to two parts. The particle is first connected to one part in
series, and then connected to the remaining part in parallel, eventually to form the composite. Numerical
studies show that the in-series ratio is independent of material parameters and can be fitted as a function
of particle volume fraction. The model is finally applied to predicting the overall property of composites
with more than two phases and the relaxation of viscoelastic composites. The results validate the
accuracy of the model.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

There have been numbers of estimates to predict overall prop-
erties of composites. The two extreme rule-of-mixture models are
the Voigt Estimate (VE) and Reuss Estimate (RE) that are proposed
to describe two-phase composites [1]. The VE corresponds to the
case when the applied load causes equal strains in the two phases.
The overall composite stress is the sum of stresses carried by each
phase. Therefore, the overall Young’s modulus is the average of the
moduli of the constituents weighted by the volume fraction of each
phase. The RE corresponds to the case when each phase of the com-
posite carries an equal stress. The overall strain in the composite is
the sum of the net strain carried by each phase, and the overall
compliance is the average of the compliance of the constituents
weighted by the volume fraction of each phase. Hill [2] has shown
that VE and RE are respectively the upper and lower bounds of the
true overall elastic modulus. Because the two estimates cannot
reflect the detailed constituent geometry, the dispersion structure
and so on, its accuracy is highly questionable [3].

The Mori-Tanaka Estimate (MTE) and the Self-Consistent Esti-
mate (SCE) are the two somewhat complex but practical estimates.
For a particle-reinforced composite [4], the MTE of the overall bulk
and shear moduli was derived by Benveniste [5] by taking the
matrix to be the homogenized comparison material (HCM). In

the SCE proposed by Hill [2], Budiansky [6] and Hori and Nemat-
Nasser [7], the HCM was the overall material under study. The
SCE seems more reliable [8], but sometimes fails to accurately pre-
dict the overall properties, or even violates a certain upper bound
at a small fiber volume fraction [9].

In order to predict the elastic modulus of two phase materials
more accurately, Tamura and coworkers [10] proposed the Modi-
fied Rule of Mixtures (MRM) by introducing an empirical parame-
ter, which was subsequently adopted by Williamson et al. [11],
Giannakopulos et al. [12], Kesler et al. [13] and Ku et al. [14]. The
MRMwas later developed by the current author [15] to be a unified
estimate including the MTE and the SCE.

Despite of the fact that a lot of approaches have been developed,
the MTE and SCE are the two most popular ones and extensively in
use in recent years. For example, by using the MTE, vibrational
behavior of continuously graded carbon nanotube-reinforced
cylindrical panels [16], single walled carbon nanotube reinforced
polymers [17], composites reinforced with short carbon fibers
and radially aligned carbon nanotubes [18], ‘‘fuzzy fiber” compos-
ites [19] and two-phase random composite materials [20] were
respectively studied. By using the SCE, the effective stiffness of
mixtures of two isotropic phases with isotropic, transversely iso-
tropic, hexahedral and octahedral interface orientation distribu-
tions was studied [21].

However, the overall property by the two approaches is still not
satisfactory, especially for larger volume fractions. Fig. 1 is the
comparison of the MTE and the SCE when Ep=Em ¼ 10 as compared
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with the numerical result through the finite element analysis
(FEA), which indicates that there is still the room to improve these
approaches.

Motivated by stress and strain distributions obtained by the
FEA, a series–parallel mixture (SP) model is proposed and validated
in this paper. To this end, the paper is outlined as follows. In Sec-
tion 2, the basic theories of the in-parallel model and the in-
series model are introduced respectively for elastic composites
and viscoelastic composites. In Section 3, the SP model is proposed
through the FEA, and the overall property is then derived together
with fitting the in-series ratio. In Section 4, extension of the SP
model is studied to composites with more than two phases and
with viscoelastic phases. Conclusions are finally made in Section 5
to close this paper.

2. Basic theories

2.1. Simple mixture models for elastic materials

2.1.1. The in-parallel model for elastic materials
As shown in Fig. 2, the two elastic materials are connected

together in parallel to form a composite. Assume that the compos-
ite is subjected to a uniform tension at the right end, so, we have

e ¼ e1 ¼ e2 ð1Þ
and

r ¼ r1f 1 þ r2f 2 ð2Þ
where r and e are respectively the overall stress and strain. r1 and
r2 are respectively the stresses of matrix phase and particle phase
while e1 and e2 are the strains and f 1 and f 2 are the volume
fractions.

As often, with the definition of the overall modulus as

E ¼ r=e ð3Þ

we obtain

E ¼ E1f 1 þ E2f 2 ð4Þ
for the in-parallel model.

The in-parallel model is also termed as the VE [15].

2.1.2. The in-series model for elastic materials
As shown in Fig. 3, if the two elastic materials are connected

together in series, and subjected to a uniform traction at the right
end, we have

r ¼ r1 ¼ r2 ð5Þ
and

e ¼ e1f 1 þ e2f 2 ð6Þ
Thus, we obtain the overall modulus as

1
E
¼ f 1

E1
þ f 2
E2

ð7Þ

The in-series model is also termed as the RE [15].

2.2. Simple mixture models for viscoelastic materials

A viscoelastic material is assumed to be the combination of
elastic units and dashpots. One simple viscoelastic material is Max-
well model in which an elastic unit is in series to a dashpot as
shown in Fig. 4.

Subjected to a step strain eðtÞ ¼ e0HðtÞ, the relaxation stress is
obtained as

rðtÞ ¼ EðtÞe0 ð8Þ
with EðtÞ, the relaxation modulus, is

EðtÞ ¼ Eee
� t
g=Ee ð9Þ

where Ee is the modulus of the elastic unit and g is the viscosity
coefficient of the dashpot.

In this context, the viscoelastic material means the material
expressed by Maxwell model with the relaxation modulus by
Eq. (9).

2.2.1. The in-parallel model for viscoelastic materials
As shown in Fig. 5, the two viscoelastic materials are connected

in parallel and subjected to a uniform tension at the right end.
According to the parallel rule expressed by Eqs. (1)–(3), together
with Eqs. (8) and (9), we have

EðtÞ ¼ f 1E1ðtÞ þ f 2E2ðtÞ ð10Þ
with

E1ðtÞ ¼ E1ee
� t
g1=E1e

E2ðtÞ ¼ E2ee
� t
g2=E2e

(
ð11Þ

If g1 ! 1, for example, the first viscoelastic material will
reduce to an elastic material. So, Eqs. (10) and (11) are also appli-
cable for the case of an elastic material connected in-parallel to a
viscoelastic material and for the case of both elastic materials con-
nected in-parallel as expressed in Eq. (4).
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Fig. 1. Overall moduli estimated by the MTE and the SCE. (Ep , Em , E: modulus of
particle, matrix and the overall composite, respectively; f p: volume fraction of
particle).
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Fig. 2. The in-parallel model.
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Fig. 3. The in-series model.
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