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a b s t r a c t

Piezoelectric materials are able to produce an electrical response when mechanically stressed (sensors)
and inversely high precision motion can be obtained with the application of an electrical field (actuators).
The macroscopic properties of piezoelectric composites depend upon the properties and the interfacial
bonding conditions of the constituent phases, and the microstructures of the composites. In the present
work, a new imperfect interface model for a thin elastic interface is derived. Square unit cell model was
used to calculate all coefficients of the material tensor. The calculation was performed via FE package
ABAQUSTM. A computational procedure, based on Python language, was developed to systematically cal-
culate all RVE effective coefficients. Comparisons to classical Hashin’s and Nairn’s interface model show
very accurate agreement for debonding and perfect boding interface.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials are able to produce an electrical
response when mechanically stressed (sensors) and inversely high
precision motion can be obtained with the application of an electri-
cal field (actuators). Sensitivity analysis [1] and optimization tech-
niques [2–4] are applied to maximize the piezoelectric actuator
efficiency.

The macroscopic properties of piezoelectric composites depend
upon the properties and the interfacial bonding conditions of the
constituent phases, and the microstructures of the composites.
Thus the effect of the interfacial bonding conditions on the
mechanical and physical properties of various composites has
attracted a lot of attention of researchers in many fields, especially,
in physics, materials science and technology, and mechanics. The
prediction of the effective moduli taking into account interface
effect is one of the fundamental problems in mechanics of compos-
ites [5–10].

Modeling interface, which are often finite-thickness inter-
phases, in composite materials is difficult. Interfaces play an
important role in determining the performance of structural mate-
rials on a wide variety of dimension scales, from grain boundaries
in metals, to inter-laminar bonds in composites and adhesive

bonds in a large variety of structures. In all cases, a basic goal of
nondestructive evaluation is the determination of the integrity of
bonds. In fact, several properties of materials, such as, just to make
a couple of examples, the mechanical behavior under stress [11] or
the ultrasonic reflection coefficient of the interface [12], are very
sensitive to boundary imperfections [13].

Regarding analytical models, different approaches have been
proposed. Broutman and Agarwal [14], Theocaris et al. [15] and
Sideridis [16] have considered the interphase as a layer between
fiber (on inclusion) and matrix, of specified thickness and of elastic
constants different from those of the matrix and the fiber. For an
alternate model, a very thin interfacial zone of unspecified thick-
ness has been considered. In that model, it is assumed that the
radial and the tangential tractions are continuous across the inter-
phase, but the displacements may be discontinuous from fiber to
matrix due to the presence of the interphase. The tractions are
assumed to be proportional to the corresponding displacement dis-
continuities. The proportionality constants then characterized the
stiffness of the interphase, which is represented by spring layer
model. Lene and Leguillar [17], Benveniste [18], Aboudi [19], Steif
and Hoysan [20], Achenbach and Zhu [21], and Hashin [22–24]
are some works related to spring layer model.

One way to model interphases is to abandon attempts for expli-
cit modeling and instead replace 3D interphases with 2D interfaces
[22]. The interphase effects are reduced for modeling the response
of 2D interfaces due to tractions normal and tangential to the
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interfacial surface, which can be modeled by interface traction
laws. Elimination of 3D interphases removes the resolution prob-
lem. The use of interface traction laws replaces numerous
unknown and potentially unmeasurable interphase properties
with a much smaller number of interface parameters. If interface
traction laws can be determined, one can potentially model inter-
phase effects well. That approach for interphase modeling was
developed for analytical modeling of interface effects in composite
materials [25–28], and for wave transmission in damage planes
[29].

In the present work, a new imperfect interface model for a thin
elastic interface is derived. A three dimensional (3D) representa-
tive volume element (RVE) model was developed for analyzing
effective properties of piezoelectric fiber embedded in a non-
piezoelectric matrix composite with imperfect interface using suit-
able interface models (including a new one), which were compared
in terms of their capability to determine the effective coefficients.
Square unit cell model was used to calculate all coefficients of the
material tensor. The calculation was performed via FE package
ABAQUSTM. A computational procedure, based on Python language,
was developed to systematically calculate all RVE effective coeffi-
cients. It is important to highlight that Tita et al. [30] presented
the numerical approach to evaluate the effective properties of dif-
ferent volume fractions for piezoelectric fibers (with circular and
square cross section) embedded in a non-piezoelectric matrix
using only a Hashin’s modified interface model. However, in the
present work, the proposed interface model is more generalized
than Hanshin’s and Nairn’s interface model, and it was used for
determining the effective properties of different volume fractions
for piezoelectric fibers (with only circular cross section) embedded
in a non-piezoelectric matrix. Therefore, Nairn’s interface model
can be considered as a particular case of the proposed model. Com-
parisons to classical Hashin’s and Nairn’s interface model show
very accurate agreement for debonding and perfect boding
interface.

2. Constitutive equations, Finite Element Method and
representative volume element (FEM–RVE)

Considering that, the piezoelectric materials respond linearly to
changes to mechanical and electrical fields. A three-phase rein-
forced piezoelectric composite is studied here, in which the fiber
has homogeneous and transversely isotropic properties. In addi-
tion, the matrix and the interface have homogeneous and isotropic
properties. Three standard notation systems are commonly used to
describe the constitutive modeling of linear-piezoelectric materi-
als. Using the conventional indicial notation in which repeated
subscripts are summed over the range of i, j, k, l = 1, 2, 3, the con-
stitutive equations can be written as follow:

rij ¼ CE
ijklekl � ekij Ek;

Di ¼ eikl ekl þ jS
ij Ej;

ð1Þ

where rij and eij are respectively the stress and infinitesimal strain
tensors, Di and Ei are the electric displacement and electric field
vectors. The elastic tensor CE

ijkl, the piezoelectric tensor eijk and the

dielectric tensor jS
ij possess the following symmetry properties

CE
ijkl ¼ CE

ijlk ¼ CE
jikl ¼ CE

klij, eijk = eikj, jS
ij ¼ jS

ji. In addition, the superscript
E indicates constant electric field, while the superscript S indicates
constant strain.

For a transversally isotropic piezoelectric material, the constitu-
tive equation can be written in terms of the following expanded
matrix form:
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ð2Þ
where the contracted Voigt notation is used. In Eq. (2), the 3-axis is
aligned with the principle direction of polarization.

In classical lamination theory, the composite lamina is modeled
as a homogeneous orthotropic mediumwith certain effective mod-
uli that describe the ‘average’ material properties of the composite.
For micromechanical analysis, composites can be studied using
representative volume element (RVE) or unit cell. The RVE is the
smallest portion of the actual composite, which has same elastic,
dielectric and piezoelectric constants and fiber volume fraction of
the investigated material. It is a microstructural model of a mate-
rial, which can be used to obtain the response of the corresponding
homogenized macroscopic continuum in a macroscopic material
point. Thus, the proper choice of the RVE determines largely the
accuracy of the modelling of a heterogeneous material. In present
work, the RVE are assumed as combinations of piezoelectric fibers
embedded in a polymer matrix, including an interface, obeying a
specified fiber volume fraction. This representative volume ele-
ment (RVE) is modeled by solid finite elements. Thus, the numeri-
cal model is used to determine a homogeneous medium equivalent
to the original composite and, as commented earlier, comprises the
smallest portion of the piezoelectric composite, which keeps the
most representative combination of its main materials. Thus, it is
assumed that the average mechanical and electrical properties of
a unit cell are equal to the average properties of the composite
material as follow:

�rij ¼ hriji ¼ 1
jV j

Z
jV
rij dV ; �eij ¼ heiji ¼ 1

jV j
Z
V
eij dV ;

�Di ¼ hDii ¼ 1
jV j

Z
V
Di dV ; �Ei ¼ hEii ¼ 1

jV j
Z
V
Ei dV ;

ð3Þ

where jV j is the unit cell volume.
Discretizing Eq. (3) using the Finite Element Method (FEM), the

average values can be calculated by:

�rij ¼ 1
jV j

Xnel
n¼1

rðnÞ
ij V ðnÞ; �eij ¼ 1

jV j
Xnel
n¼1

eðnÞij V ðnÞ;

�Di ¼ 1
jV j

Xnel
n¼1

DðnÞ
i V ðnÞ ; �Ei ¼ 1

jV j
Xnel
n¼1

EðnÞ
i V ðnÞ;

ð4Þ

where nel is the number of finite elements of the complete unit cell,

V ðnÞ is the volume of the nth element, and rðnÞ
ij , eðnÞij , DðnÞ

i and EðnÞ
i are

the respective tensors evaluated in the nth element.
For a complete description of a differential problem in order to

determine effective material properties, it is necessary to formu-
late appropriate boundary conditions. Since periodic structures
are investigated so called periodic boundary conditions are applied
to the considered RVE. Considering of the composite as a periodical
array of the RVEs, the periodic boundary conditions must be
applied to the RVE models. This implies that each RVE in the com-
posite has the same deformation mode and there is no separation
or overlap between the neighboring RVEs. For any parallelepiped
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