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a b s t r a c t

This paper presents new finite elements for plate analysis of smart composite structures. Based on
the sinus model, Murakami’s Zig–Zag functions are introduced in the three directions, improving the
accuracy for multilayered modeling. The transverse normal stress is included allowing use of the
three-dimensional constitutive law. Three different eight-node finite elements are developed using C0

approximations, each with a different number of unknown functions: 9, 11 or 12. For the piezoelectric
approximation, a layer wise description is used with a cubic variation in the thickness of each layer while
the potential is assumed to be constant on each elementary domain for the in-plane variation.
These finite elements aims at modeling both thin and thick plates without any pathologies of the classical
plate finite elements (shear and Poisson or thickness locking, spurious modes, etc.). This family is
evaluated on classical piezoelectric problems of the literature and special emphasis is pointed towards
the introduction of equipotential conditions.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Research and development concerning high-performance struc-
tures are very intense since some decades. Structural health mon-
itoring, active vibration damping, and energy harvesting are some
examples of possible applications of a multifunctional structural
component. Piezoelectric materials permit to convert mechanical
and electrical energy at frequency ranges that are most interesting
for technical applications such as vibration damping and rapid
shape adaptation [1]. Development of theoretical and numerical
models for this kind of structures is very important and active.
For this purpose and in the framework of two-dimensional plate/
shell models, different choices can be made for the mechanical
approximation and the following classification is classically admit-
ted for the variation in the thickness direction: (i) Equivalent Single
Layer (ESL) models, in which the number of unknowns is indepen-
dent of the layer number; (ii) Layer-Wise (LW) descriptions, for
which the number of unknowns and, thus, the computational cost
increases with the number of layers. While most developments
employ an ESL description for the mechanical behavior, and partic-
ularly the First order Shear Deformation Theory (FSDT), a Layer-
Wise description is necessary for the piezoelectric approximation
to impose electric boundary conditions at each piezoelectric layer
interfaces, i.e., the electrodes, within the stack. Inside each piezo-

electric layer, the electric potential can be linear, quadratic or
higher and a comparison has been proposed in [2].

A review of different approaches is available in [3,4] and in the
framework of the Carrera Unified Formulation (CUF) in [5]. For the
FE approximations, a recent review limited to shell models is also
given in [6].

The limitation of the FSDT model is related to the constant
transverse displacement hypothesis, inducing no thickness change
and the use of the reduced 2D constitutive law. The use of the full
3D constitutive law is an important feature for a consistent repre-
sentation of complex physical interactions like multi-field cou-
pling. Furthermore, accurate modeling of thick structures needs
the transverse normal stress and the 3D constitutive law.

Therefore, a high-order model is chosen with sinus function for
the in-plane displacements and quadratic assumption along the
thickness of the transverse deflection. Thus, the 3D constitutive
law is retained and a parabolic distribution of the transverse shear
strains and a non linear variation of the transverse normal strain
are recovered. In order to introduce transverse strain discontinu-
ities required to fulfill the interlaminar equilibrium, Murakami’s
Zig–Zag function (MZZF) [7] is superimposed to the high-order
ESL kinematics for the 3 displacement components. Note that
MZZF does not depend on the constitutive coefficients and is,
hence, attractively simple in conjunction with three-dimensional
constitutive laws including multi-field coupling. Based on this
kinematics, an 8-node plate finite element (FE) is proposed, free
of numerical illness such as transverse shear and Poisson lockings,
oscillation and spurious mechanics [8]. The approximation of the
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electric potential must be able to model piezoelectric patches, and
a constant value is considered on each elementary domain while a
cubic variation in each layer is used, based on the polynomial
expansion given in [9,10].

The paper is organized as follows: Section 2 describes the plate
problem and the FE approximations are given in Section 3. The
resulting FE are validated in Section 4 by referring to well-known
linear static piezoelectric and composite plate problems. Finally,
Section 5 summarizes the main findings.

2. Description of the plate problem

2.1. Governing equations

Let us consider a plate occupying the domain V¼X� � e
26 z6 e

2

� �
in a Cartesian coordinate system ðx1;x2;x3¼ zÞ. The plate is defined
by an arbitrary surface X in the ðx1;x2Þ plane, located at the
midplane for z¼0, and by a constant thickness e.

The displacement is denoted ~uðx1; x2; zÞ and the electric poten-

tial is /ðx1; x2; zÞ. eijðx1; x2; zÞ and ~Eðx1; x2; zÞ are the strain tensor
components and the electric field vector, respectively, deduced
from primal variables by the geometric relations. Furthermore,

rijðx1; x2; zÞ and ~Dðx1; x2; zÞ are the conjugated fluxes (stress tensor
components and dielectric displacement vector, respectively)
obtained from the constitutive equations given in the next
subsection.

2.1.1. Constitutive relation
The 3D constitutive equation for a linear piezoelectric material

is given by the following set of coupled equations [11] for a layer
ðkÞ:

½rðkÞ� ¼ ½CðkÞ� ½eðkÞ� � ½eðkÞ�T ½EðkÞ� ð1aÞ
½DðkÞ� ¼ ½eðkÞ� ½eðkÞ� þ ½�ðkÞ� ½EðkÞ� ð1bÞ

where we denote by ½C� the matrix of elastic stiffness coefficients
taken at constant electric field, by ½e� the matrix of piezoelectric
stress coefficients and by ½�� the matrix of electric permittivity coef-
ficients taken at constant strain. The explicit form of these matrices
can be found in [6] for an orthotropic piezoelectric layer polarized
along the thickness direction z. Eq. (1a) expresses the piezoelectric
converse effect for actuator applications, whereas Eq. (1b) repre-
sents the piezoelectric direct effect which is exploited in sensor
applications. Note that the constitutive law is expressed in the local
reference frame associated to each layer.

2.1.2. The weak form of the boundary value problem
The classical piezoelectric variational formulation of [12] is

employed in which the primary field variables are the ‘‘generalized
displacements”, i.e., the displacement field and the electrostatic
potential. Using a matrix notation and for admissible virtual dis-
placements ~u� and electric potential /� (virtual quantities are
denoted by an asterisk), the variational principle is given by:Z
V
q½u��T ½€u�dV ¼ �

Z
V
½eðu�Þ�T ½rðu;/Þ�dV þ

Z
V
½u��T ½f �dV

þ
Z
@VF

½u��T ½F�d@V þ
Z
V
½Eð/�Þ�T ½Dðu;/Þ�dV

�
Z
V
q /� dV �

Z
@VQ

Q /� d@V ð2Þ

where ½f � is the body force vector, ½F� the surface force vector applied
on @VF ; q the volume charge density, Q the surface charge density
supplied on @Cq and q is the mass density. Finally, eðu�Þ and Eð/�Þ

are the virtual strain and virtual electric field that satisfy the com-
patibility gradient equations. In the remainder of this article we will
refer only to static problems, for which the left-hand side term is set
to zero. Furthermore, body forces and volume charge densities will
be discarded (½f � ¼ ½0�; q ¼ 0).

2.2. The mechanical part

2.2.1. The displacement field
Based on the sinus model, see [13], a new plate model which

takes into account the transverse normal stress is presented in this
section. This extension is based on following developments:

� various models for beams, plates and shells based on the refined
sinus theory, see [13–20];

� our previous paper on a 7 parameter model for thermo-
mechanical analysis [8].

In the framework of ESL approach, the kinematics of our model
is assumed to have the following particular form

U1ðxa; zÞ ¼ u0
1ðxaÞ þ z u1

1ðxaÞ þ f ðzÞ uf
1ðxaÞ

U2ðxa; zÞ ¼ u0
2ðxaÞ þ z u1

2ðxaÞ þ f ðzÞ uf
2ðxaÞ

U3ðxa; zÞ ¼ u0
3ðxaÞ þ z u1

3ðxaÞ þ z2 u2
3ðxaÞ

8>>>>><
>>>>>:

ð3Þ

where a 2 f1;2g and i 2 f1;2;3g. In Eq. (3), the superscript is asso-
ciated to the expansion order in z while the subscript is related to
the component of the displacement. Thus, u0

i are the displacements

of a point of the reference surface while ðu1
a;u

f
aÞ are measures for

rotations of the normal transverse fiber about the axis ð0; xaÞ. The
functions ua3 permit to have a non-constant deflection for the trans-
verse fiber and allow to have non zero transverse normal stretch.
Furthermore, the quadratic assumption for the transverse displace-
ment avoids the occurrence of Poisson (or thickness) locking, see
[8].

In the context of the sinus model, we have

f ðzÞ ¼ e
p

sin
pz
e

ð4Þ

It must be noticed that the classical homogeneous sinus model [13]
can be recovered from Eq. (3) assuming u1

a ¼ �u0
3;a, and neglecting

the unknown functions ua3.
The choice of the sinus function can be justified from the three-

dimensional point of view, using the work [21]. As it can be seen in
[22], a sinus term appears in the solution of the shear equation (see
Eq. (7) in [22]). Therefore, the kinematics proposed can be seen as
an approximation of the exact three-dimensional solution. Fur-
thermore, the sinus function has an infinite radius of convergence
and its Taylor expansion includes not only the third order terms
but all the odd terms.

2.2.2. The Murakami’s Zig–Zag terms
In order to evaluate the influence of Zig–Zag terms [7] in a high-

order ESL model, the following displacement per layer ðkÞ are
added to Eq. (3):

UðkÞ
1 ðxa; zÞ ¼ ZðkÞðzÞ uz

1ðxaÞ
UðkÞ

2 ðxa; zÞ ¼ ZðkÞðzÞ uz
2ðxaÞ

UðkÞ
3 ðxa; zÞ ¼ ZðkÞðzÞ uz

3ðxaÞ

8>><
>>: ð5Þ

with

ZðkÞðzÞ ¼ ð�1Þk fkðzÞ and fkðzÞ ¼
2
ek

z� 1
2
ðzk þ zkþ1Þ

� �
ð6Þ
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