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a b s t r a c t

Curved laminates of composite materials are analytically investigated in this paper. Curved zones are a
critical part of many kinds of composite beams, for example, L-shaped, C-shaped, X-shaped or T-
shaped beams, which are susceptible to unfolding failure. A new stress calculation procedure is presented
to determine the radial, circumferential and shear stresses in a curved laminate under normal and tan-
gential surface loads and tension, out of plane shear and bending end loads, assuming a 2D stress state.
The method assumes that the laminate is made up of a set of fictitious laminas. Making the number of
fictitious laminas tend to infinity, analytical solutions are obtained. The nature of the method makes it
extremely easy to apply to composite laminates. Firstly, the accuracy of the method is proved by compar-
ing its results with those obtained from the literature for the problems concerning the pure bending of a
homogeneous and a layered curved beams. Secondly, the results obtained using this analytic method
with the problem of a layered curved beam subjected to surface loads (for which no previous closed-
form analytical solution has been found in the literature) are compared with the results obtained using
a finite element model, showing excellent agreement.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The use of composite materials in the aerospace industry has
significantly increased over the last years. Composite laminates
have been introduced into the design and manufacturing of aircraft
components with high responsibility. The main advantage of com-
posite laminates is their high specific strengths associated with
their in-plane stresses. However, the massive use of composites
in aircraft structures involves their usage in more complex geome-
tries. Therefore, a better knowledge of the behaviour of composite
laminates under complicated stress fields is required.

Composite laminates are well designed for bearing high
intralaminar stresses, being very efficient in these kind of situa-
tions. However, their interlaminar strengths are comparatively
much lower than the intralaminar ones. In high curvature zones
of composite material components, interlaminar stresses develop
which, added to the low strengths associated with the intralaminar
plane, give rise to the appearance of undesirable failure modes.
This is the case of the unfolding failure, which consists of a delam-
ination observed when the curved component is loaded under an

opening bending moment. Typical components prone to this kind
of failure (see [1,2]) are angle brackets, T-shaped beams, joggles,
X-shaped beams, corrugated laminates, etc.

The Classical Laminate Theory (see [3, chap. 4]) does not con-
sider interlaminar stresses, either because typical laminate designs
only consider intralaminar stresses or because the interlaminar
stresses are too small when compared with the intralaminar ones.
This classical method has also been applied to curved laminates
[4], but is again not able to calculate the interlaminar stresses.
However, when the laminate is curved with t � R (where t is the
thickness of the laminate and R the mean radius), interlaminar
stresses may reach significant values and become the main failure
cause in these kinds of composite laminates.

Typically, these interlaminar stresses are calculated using
Lekhnitskii’s equations (see [5, chap. 3]), which yield very accurate
results in many cases. These equations are widely used in the liter-
ature [6–10], but their main limitation is that they are valid only
for anisotropic homogeneous materials and composite materials
are not homogeneous at the laminate level (inhomogeneities asso-
ciated with the presence of fibre and matrix inside each ply are not
considered in this paper). Thus, the less homogeneous the laminate
in terms of the stacking sequence, the more inaccurate the results
when applying Lekhnitskii’s equations.

http://dx.doi.org/10.1016/j.compstruct.2016.03.025
0263-8223/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: juagoncan2@alum.us.es (J.M. González-Cantero), egraciani@

us.es (E. Graciani), abg@us.es (A. Blázquez), fparis@us.es (F. París).

Composite Structures 147 (2016) 260–273

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2016.03.025&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2016.03.025
mailto:juagoncan2@alum.us.es
mailto:egraciani@ us.es
mailto:egraciani@ us.es
mailto:abg@us.es
mailto:fparis@us.es
http://dx.doi.org/10.1016/j.compstruct.2016.03.025
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


Moreover, Lekhnitskii’s equations are obtained for constant cur-
vature 2D curved beams by assuming either that stresses are not
dependent on the angular co-ordinate (valid when the beam is
under a constant bending moment) or that stresses have a sinu-
soidal dependence on the angular co-ordinate (valid when the
beam is under end forces and moments). Due to these hypotheses,
Lekhnitskii’s equations are not valid when distributed non-auto-
equilibrated loads are applied, because these cause stresses to have
a non-sinusoidal dependence on the angular co-ordinate.

Using the same hypotheses, Ko and Jackson [11] developed the
equations for the evaluation of stresses in a curved composite lam-
inate under end loads. To decrease the complexity of applying the
equations developed by Ko and Jackson, Kedward et al. [1] pre-
sented a simplified and approximated equation for the maximum
of the radial stress due to the bending moment, and Cui et al.
[12] the corresponding approximation for the maximum shear
stress due to the shear force (approximating it using the maximum
in a flat laminate).

Using the aforementioned equations, the design procedure for a
composite component prone to unfolding failure is typically car-
ried out by: (1) calculating the forces and moments in the design
loading state, (2) calculating the stresses by using the previously
mentioned solutions and (3) applying a failure criterion, typically
given as a function of the stresses and their allowable values.

The first unfolding failure criteria were based on mean stresses
in the thickness (see [13]). Later, more advanced criteria are: firstly
the one presented by Kim and Soni [14], which consists of a quad-
ratic criterion concerning the shear and normal interlaminar stres-
ses, and secondly the one presented by Most et al. [15], which also
includes the shear and normal interlaminar stresses, but uses dif-
ferent quadratic criteria on the tensile and compressive sides.
Other authors also include the stress along the fibre direction in
the delamination criterion [16].

The unfolding failure criteria require the strengths of the mate-
rial in the interlaminar direction to be determined. The interlami-
nar tensile strength (ILTS) is typically calculated by the four-point
bending test [17,18]. It can also be calculated using a tensile test
[19], but the ILTS calculated by this and other methods based on
straight beams is usually very high when compared with the ILTS
obtained for the curved beam [20], mainly due to the size effect
[21]. The interlaminar shear strength (ILSS) is typically calculated
using a three-point bending test [22].

The design procedure described above produces very conserva-
tive results in many cases (since the stress solutions employed do
not take into account the edge-effects, that is, the changes in the
interlaminar stresses appearing at the beam ends or in the vicinity
of the connection between beams with different curvatures).
Therefore, finite elements calculation is usually employed for a
more precise stress calculation. As an example, see Most et al.
[15], who showed that actual analytical procedures are very con-
servative at the zones in which the curvature of the beam changes
(typical in sections such as those represented in Fig. 1).

Due to the conservative results obtained and to the difficulties
found in extending the analytical model to more complex geome-
tries (double-curvature, variable curvature, distributed loads, cor-

rugated, etc.), several authors have been working on the
development of specific shell elements for the finite elements
method [23–25] and other numerical calculation techniques such
as the differential quadrature method [26,27] and power series
expansion of displacements and stresses [28]. However, the finite
elements method and other numerical techniques are not efficient
in the design phase of composite structures, since high calculation
and modelization times are required for the optimization of the
geometry and the stacking sequence. Therefore, analytical models
for quick stress calculations are required to improve efficiency in
the design phase.

Typical analytical curved beam calculation methods consider
the hypothesis for thin beams (t � R), which requires the calcula-
tion of the stiffness constants similar to the calculation in the clas-
sic flat laminate theory, see Lin and Lin [29]. These methods offer a
preliminary estimation of the interlaminar stresses. However,
many curved beams have a R=t ratio between 1 and 5 and, there-
fore, the hypothesis for thin beams is not always valid. In these
cases several authors have considered the effect of the curvature
on the stiffness constants and the strain–displacement relations,
for example Qatu [30], Kress et al. [31] and Guedes and Sa [32],
who all obtain logarithmic expressions for the stiffness constants
A;B and D of the laminate due to the curvature effect. These loga-
rithmic expressions imply a coupling between in-plane and bend-
ing effects (B– 0) even in the presence of symmetrical stacking
sequences. These models are approximations and simplifications
of the exact model developed by Ko and Jackson [11].

The analytical solutions were compared with experimental
results in several geometries and loading states. For example, Cui
and Ruiz [33] and Wisnom et al. [34] tested C-specimens under
combined axial, shear and bending loads, Cui et al. [12] tested
curved beams under pure bending, and McRobbie et al. [35] tested
open-rings of composite laminates and sandwiches under bending
due to end loads.

Going back to the solution given by Ko and Jackson [11], this
presents two main limitations. Firstly, it only takes into account
end loads, and its extension to other cases of interest such as pres-
sure loads and shear distributed loads is not straightforward since
the required stress functions have not been obtained yet. Secondly,
it is based on regularized solutions and, therefore, does not take
into account the edge-effects showed by Most et al. [15].

In this paper, an analytical model is proposed for the develop-
ment of a new calculation methodology for stresses in curved lam-
inated beams, taking into account the heterogeneity of a composite
laminate across the thickness. For the analysis of a curved laminate
subjected to end loads, this model has the advantage of being
easier to implement than the analytical solution given by Ko and
Jackson [11], while at the same time maintaining greater accuracy
for moderately thick curved composite beams. In addition, it has
the capability of overcoming the aforementioned limitations of
the analytical solution given by Ko and Jackson [11], since it can
be easily extended to calculate stresses due to external pressure
and shear surface loads (as is shown in the present paper), in com-
putational times smaller than other analytical models such as the
one presented by Matsunaga [28]. Although not shown in this
paper, due to lack of space, it also offers the possibility of being
expanded to calculate edge-effects and even to consider 3D stress
states.

Firstly, the fundamentals of the model are developed for the
case of a curved beam made of a homogeneous anisotropic mate-
rial under end loads (for both thin and thick laminates). If external
pressure and shear surface loads are null and sections sufficiently
far from the beam ends are analysed, the solution presented by
Lekhnitskii et al. [5] can be considered exact, and thus is employed
as a benchmark to show the superior accuracy of the method
developed for distinct thicknesses.

(a) (b) (c)
Fig. 1. Typical composite sections made up of straight and curved parts: (a) L-
shaped beam, (b) C-shaped beam, (c) joggle.
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