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a b s t r a c t

A longstanding puzzle of nonlocal cantilever models is that they do not predict the dynamic softening
behaviors of beams compared with the classical beam models. This puzzle exists and is not well solved
in the past several years. In this paper, we revisit and make our first attempt to address this issue. By
using the weighted residual approaches, the nonclassical force resultants and boundary conditions are
obtained. Based on the nonclassical boundary conditions, closed-form solutions for the vibration and
buckling problems of the nonlocal Euler–Bernoulli cantilever beams and Timoshenko cantilever beams
are derived. Numerical results show that the softening behaviors of cantilever beams can be captured
in the nonlocal Euler–Bernoulli beam theory and Timoshenko beam theory. In addition, the differences
of the frequencies predicted by the proposed models are increasing larger than those given in the liter-
ature as the nonlocal parameter increases, demonstrating clearly the prominent effect of nonclassical
boundary conditions on the dynamic behaviors of beams. The asymptotic analysis is constructed to
unveil the underlying mechanism of dynamic behaviors of the beams. The numerical results of the ana-
lytical solutions obtained in this work may serve as benchmarks for future studies of the dynamic behav-
iors of composite structures.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Low dimensional materials and structures in the form of bars,
beams, plates and shells have been widely used in sensors, res-
onators, micro-electro-mechanical systems (MEMS) and nano-
electro-mechanical systems (NEMS). In these applications, the
size-dependent behaviors of materials and structures have been
found due to that the characteristic dimensions of these materials
and structures are comparable to the internal length scales. Contin-
uum models in the framework of classical continuum theories are
not capable of characterizing the size effect due to the lack of the
internal length(s), characterizing the underlying microstructure,
in the constitutive equations.

Generalized or higher-order continuum theories of elasticity
have been extensively used to account for size-dependent behav-
iors of materials and structures. Examples of these continuum the-
ories include couple stress elastic theory [1–4], strain gradient

theory [5], surface elastic theory [6] and nonlocal elastic theory
[7]. Numerous studies have demonstrated that the former three
elastic theories can deal with size-dependent materials and struc-
tures with stiffening behaviors, whereas the last one with soften-
ing behaviors. In view of the great challenges in determining the
internal length(s) of the materials and structures, nonclassical con-
tinuum models including fewer internal length(s) are desirable.
Introduction of the internal length(s) into the constitutive equa-
tions will certainly encounter complex nonclassical boundary
value problems (BVPs) [8]. To simplify and obtain the closed-
form solutions of the BVPs, requirement of the fewer boundary
conditions is appreciated. Based on the above discussion, the con-
tinuum models based on the nonlocal elastic theory developed by
Eringen [7] have found wide applications in the analysis of bend-
ing, buckling, vibration and wave propagation problems of carbon
nanotubes and graphene sheets in the last decade (see the recent
review by Arash and Wang [9]). In the nonlocal elastic theory,
the stress at a reference point in the body depends not only on
the strains at this point but also on strains at all other points of
the body. This theory contains the detailed information about the
interactions between atoms or molecules by introducing an
internal length scale in the constitutive relations. As one significant
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earlier work, Peddieson et al. [10] proposed the one-dimensional
constitutive equation of nonlocal theory to study the static bending
of the nanobeams. Since then, the topic of bending, buckling, vibra-
tion and wave propagation problems attracts increasing attention
and relevant works are mainly classified into two directions. The
first direction deals with how the nonlocal parameter affects the
static and dynamic behaviors of structures. For more details, the
interested readers may refer to Challamel and Wang [11], Wang
et al. [12], Lu [13], Reddy [14], Wang et al. [15] and Ghannadpour
and Mohammadi [16] for beam models in which the effective
bending rigidity of nonlocal beams was stiffer than those predicted
by the classical beam models, or refer to Hosseini-Hashemi et al.
[17] for plates with at least one free edge in which the frequency
curves were not as smooth as ones with other combination of
boundary conditions. These works directly combine the nonlocal
constitutive equation(s) with the equilibrium equation(s) of classi-
cal structures, which will result in the incorrect boundary condi-
tions for structures with free ends. In other words, the resultants
in the above works are not variational-consistent. The second
direction concentrates on the calibration of nonlocal parameter
by either comparing with results of the molecular dynamics simu-
lations [18–21] or more recently by making use of the analytical
equivalence between the discrete microstructured models and
the nonlocal continuum models [22–27].

In the above-mentioned works, the nonclassical boundary con-
ditions are obtained via simply replacing the classical force resul-
tants by the nonclassical force resultants in the equilibrium
equations (see Eqs. (4)–(5) and (8)–(9) or Table 1). Even though
it will be later found in the paper that the identical results are
obtained for Euler–Bernoulli beams with simply supported bound-
ary conditions and doubly clamped boundary conditions, it is not
true for the Timoshenko beam cases subjected to either boundary
conditions mentioned above. As a matter of fact, the nonclassical
boundary conditions used in the literature should be carefully
screened to avoid, for example, the obvious counterintuitive stiff-
ening phenomena for cantilever beams [12,14,28–30] and distinc-
tive values of the nonlocal parameter calibrated by Duan et al. [18]
for nonlocal Timoshenko cantilever beams. Therefore, derivation of
the nonclassical boundary conditions in the nonlocal elasticity is of
great significance from mathematical and mechanical points of
view. Indeed, the nonclassical boundary conditions for beams
[31,32] modeled by nonlocal theories had been derived using the
semi-inverse method developed by He [33]. However, the works
by Adali [31] and Kucuk et al. [32] on the derivations of the non-
classical boundary conditions did not provide the closed-form
solutions for Euler–Bernoulli beam models and Timoshenko beam
models, nor presented any asymptotic analysis on the frequency
equation(s). In the literature, the bending solutions were found
to be size dependent for beams subjected to concentrated loading.
This issue has been addressed in detail by using gradient elastic
models that were based on the mixed curvatures in the
constitutive equations [11,34] and other variational formulations
[35–37]. Lim [38,39] presented a complete and asymptotic repre-
sentation of the nanobeam model with nonlocal stress via an exact
variational principle approach. The nonclassical BVPs of beams
were studied and their results of bending deflections showed the
fluctuated behaviors. Later, the similar fluctuated behaviors for
beam bending and plate bending were also observed [40]. For
the buckling problems, the variational formulation had also been
studied by Kumar [41]. For the dynamical problems, the distinct
frequencies observed in the nonlocal cantilevers had not been well
addressed.

The objective of the present work is two folds. First, we use the
weighted residual approaches (WRAs) to derive the variational-
consistent nonclassical boundary conditions of nonlocal beam
models. We then discuss the nonclassical boundary conditions

used in the literature. Second, we deal with the BVPs for cantilever
beams and subsequently solve the longstanding puzzle of nonlocal
cantilever beams. It is believed that the closed-form solutions for
the vibration and buckling problems of nonlocal cantilever beams
may provide some new aspects for calibrating the Eringen’s nonlo-
cal parameter e0 obtained by other authors [12,14,18,23–26,28,29].

The layout of this paper is as follows. Section 2 briefly reviews
the nonlocal elasticity theory. In Section 3, the governing equations
of motion of nonlocal Euler–Bernoulli beam and Timoshenko beam
models are given. Then, the nonclassical boundary conditions are
derived by the WRAs in Section 4. We obtain the closed-form solu-
tions of the frequency and buckling load equations for Euler–
Bernoulli beam theory (EBT) and Timoshenko beam theory (TBT)
in Sections 5 and 6, respectively. In Section 7, we carry out the
asymptotic analysis for the EBT, and summarize the main results
in Section 8.

2. Nonlocal theory

In the nonlocal theory of Eringen [7], the nonlocal stress tensor
r at point x is the weighted average of the local stress of all points
in the body:

r ¼
Z
V
Kðjx0 � xj;aÞTðx0Þdx0; TðxÞ ¼ CðxÞ : eðxÞ; ð1Þ

where Kðjx0 � xj;aÞ is the nonlocal modulus or attenuation function
incorporating the constitutive equations of the nonlocal effects at
the reference points x produced by the local strain at the source
point x0; jx0 � xj is the Euclidean distance between x and x0; TðxÞ
is the classical macroscopic stress tensor at point x, and a is a mate-
rial constant that depends on internal and external characteristic
lengths. CðxÞ is the fourth-order elasticity tensor: denotes the
‘double-dot product’; eðxÞ is the strain tensor; a ¼ e0a=Le is a small
scale parameter where e0 is a material constant which can be
obtained by experiments or through other continuum models; a is
an internal characteristic length (e.g., lattice parameter, C–C bond
length, granular distance, or the representative volume element of
the considered continuum); Le is an external characteristic length
(e.g., crack length, wave length.). As it is difficult to obtain the ana-
lytical solution of integral Eq. (1), a simplified differential equation
is used to replace the integral constitutive equation in an equivalent
differential form as

ð1� a2L2er2Þr ¼ T; ð2Þ
where r is the Laplace operator.

3. Governing equations of nonlocal beams

This section reviews the main results of Lu [13] focusing on the
governing equations of nonlocal EBT, and Reddy [14] concerning
the governing equations of nonlocal TBT for completeness of the
content. We consider an elastic beam of length L. The x-axis is cho-
sen along the length of the beam, and z-axis is taken along the
thickness of the beam.

3.1. Governing equation of the EBT

The equilibrium equations of motion of the classical EBT are
given by

Q 0 � Pw00 ¼ qA €w;

Q ¼ M0;
ð3Þ

where w ¼ wðx; tÞ is the transverse deflection, q is the mass density,
A is the cross-sectional area of the beam, P is the initial axial force
(positive for compression). The prime denotes partial derivatives
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