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a b s t r a c t

A physical–mathematical interpretation of the alternative first-order shear deformation concept pro-
posed by the author is first presented to get rid of an intuitive aspect of its basic premise that the total
deflection w can be assumed as the sum of the bending and transverse shear deflections wb and ws. Then,
on the basis of several beam and plate illustrative examples, the qualitative theoretical framework of the
alternative concept is clarified by comparing with the traditional Timoshenko beam and Mindlin–
Reissner plate theories. In addition, a new first-order shear deformation cylindrical shell theory is
developed based on the alternative concept and Hamilton’s principle to obtain a frequency formula for
in-plane vibrations of a thick ring. Finally, the physical–mathematical position of the present theory
among the conventional thin-walled structure analysis models is deliberated. The result shows that
the present theory is regarded as a refined mathematical generalization of the so-called corrected
classical theory and it could lead to a reduction in the number of fundamental variables and governing
equations in the modeling of the transverse shear deformable composite structures.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Moderately thick beams, plates and shells are important struc-
tural elements used in many engineering purposes for static defor-
mation, vibration and buckling problems, and there exists a vast
amount of transverse shear deformable theories to date, including
higher-order theories. However, even though many accurate
higher-order theories are available (e.g., Reddy [1,2], Soldatos [3],
Hanna and Leissa [4]), first-order shear deformation theories repre-
sented by the Timoshenko beam and Mindlin–Reissner plate mod-
els still continue to be the focus of much research because of their
inherent simplicity, involving recent studies on the advanced
microstructure-dependent Timoshenko beam or Mindlin plate
models: Ma et al. [5], Roque et al. [6], Abadi and Daneshmehr
[7,8], Rahmani and Pedram [9] or Ma, et al. [10].

A recent review is given by Endo [11], in which an overall his-
torical survey on the physical recognition of deformation was car-
ried out, including the so-called corrected classical and first-order
shear deformation theories and besides the alternative formulation
of first-order shear deformation theories proposed by the author
and his co-worker (Endo and Kimura [12]).

The alternative concept is basically equivalent to that of the cor-
rected classical theory in the sense that the total deflection w is
superimposed as w ¼ wb þws, where wb and ws are the bending
and transverse shear deflections, respectively, and almost similar
relations would be held between them, though their actual meth-
ods of formulation are different. Advantages of the alternative
deformation concept are summarized as follows (Endo [11]):

(1) Consistent with corrected classical theory in the sense that
wb and ws are distinguishable physical entities, and are sim-
ply added to give the total deflection. Also, both deflections
are zero at either clamped or simply-supported ends.

(2) Allows the bending and transverse shear deflections to be
obtained concurrently and uniquely using a deductive
approach during first-order shear deformation modeling.

(3) Useful for developing an FEM element formulation free from
shear locking.

The idea of partitioning the transverse displacements into
bending and transverse shear components wb and ws was first pro-
posed, to the best of the author’s knowledge, by Timoshenko [13],
later adopted by Donnell [14], Davidson and Meier [15], Anderson
[16], Jacobsen and Ayer [17], Huffington [18], Allen [19], Krishna
Murty [20], Senthilnathan et al. [21], Zenkert [22] and recently
by Shimpi [23], Senjanovic et al. [24,25], and Thai and his
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co-workers (e.g., [26–28]). Thus, the first-order shear deformation
theories based on the concept as w ¼ wb þws are beginning to be
presented by several researchers (e.g., Endo and Kimura [12]; Shimpi
et al., [29]; Thai and Choi [30,31]; Kolakowski and Krorak [32]).

However, those works all depend on the so-called intuitive
techniques in which an idea that w can be superimposed as
w ¼ wb þws was introduced a priori. On the other hand, with
regard to the beam and plate dynamic or static boundary value
problems, the author and his co-worker, Kimura, (Endo [11]; Endo
and Kimura [12]) carried out the detail numerical verification of
the proposed alternative formulation by comparing with the tradi-
tional Timoshenko beam and Mindlin plate models for various
boundary conditions. Some of those calculated results are shown
in the prefaces of Section 3 (for beams) and Section 4 (for plates).
Nevertheless, any qualitative theoretical framework of the pro-
posed deformation concept has not been elucidated or clarified
completely yet. In addition, to the best of the author’s knowledge,
no first-order shear deformation cylindrical shell theories based on
the alternative concept are known to date.

Considering the above, a physical–mathematical interpretation of
the alternative concept is first presented in Section 2 by referring to
Vasiliev’s works [33,34] on the Reissner static plate theory [35].
Then, in Sections 3 and 4, mainly from the qualitative (not numeri-
cal) aspects, the theoretical framework of the alternative first-order
shear deformation concept is investigated and clarified on the basis
of several simple illustrative examples: statically deformed beams
and rectangular plates subjected to some dynamic or static condi-
tions, and by comparing with the traditional Timoshenko beam
and Mindlin–Reissner plate theories. And in Section 5, a new first-
order shear deformation cylindrical shell theory is developed based
on the alternative concept and Hamilton’s principle, and then its
relational expressions are applied to obtain an approximate formula
for in-plane vibrations of a thick ring based on the series-type
synthetic-frequencymethod (Endo and Taniguchi [36,37]). Its results
are compared with the authors’ previous numerical results (Endo
and Taniguchi [38]) based on the conventional first-order shear
deformation cylindrical shell theory by Mirsky and Herrmann [39].
Finally, in Section 6, the physical–mathematical position of the alter-
native first-order shear deformation theory among the conventional
thin-walled structure analysis models is deliberated.

All the theoretical models based on the alternative first-order
shear deformation concept will be designated as present theory
in the coming sections.

2. Physical–mathematical interpretation of the alternative
deformation concept

First, consider a basic premise of the alternative concept that
the total deflection w is superimposed as w ¼ wb þws by referring
to Vasiliev’s works [33,34].

According to the Mindlin plate theory [40], three dimensional
displacement components ux;uy; uz in a Cartesian co-ordinate sys-
tem ðx; y; zÞ are assumed as

ux ¼ zhxðx; y; tÞ; uy ¼ zhyðx; y; tÞ; uz ¼ wðx; y; tÞ; ð1Þ
where t is the time, w is the plate deflection and hx; hy are the rota-
tions of the plate element in the x–z and y–z planes. The above Eq.
(1) is a rather natural assumption as a first step of series-expansion
of displacements with respect to the thickness coordinate z.

The equilibrium equations are given by
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where q is the density, h is the plate thickness, Mx; My and Mxy are
the bending and twisting moments and Qx; Qy are the transverse
forces, and are expressed as
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Here D ¼ Eh3
=12ð1� m2Þ is the plate flexural modulus, E and G

are respectively the Young’s and shear moduli, m is the Poisson’s
ratio, q is the external load and k0 is the shear correction factor
(i.e., shear coefficient), respectively.

Substitution of Qx;Qy in the first and second relations of Eq. (2)
into the third expression reduces to
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where r2 is the Laplacian r2 ¼ @2=@x2 þ @2=@y2. Here, Eq. (4)
allows us to introduce a dilatation potential u such as (Mindlin
[40]; Vasiliev [34])

hx ¼ � @u
@x

; hy ¼ � @u
@y

: ð5Þ

Substituting Eq. (5) into Eq. (3) and further considering the first
and second relations of Eq. (2), we can obtain the following two
expressions (Vasiliev [34]):
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From integrated Eq. (6) with respect to x and y, respectively, we
arrive at Fu ¼ constant. And further, considering that its constant
can be included in u since we need only derivatives of u (Vasiliev
[34]), we can put as Fu ¼ 0, which results in the following
expression:
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Here, if we consider that as k0Gh ! 1 Eq. (8) reduces to w ¼ u,
and besides the terms ð�@u=@xÞ and ð�@u=@yÞwould contribute to
the flexural deformation of a plate via ux and uy, it is acceptable to
introduce the so-called bending deflection wb and the definition
u ¼ wb. With the above replacement of u with wb and taking into
account Eqs. (2), (3) and (5), total shearing forces Qx and Qy are
expressed as
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While, according to Donnell’s method of thinking, we introduce
the so-called transverse shear deflectionws and assume the follow-
ing relations to hold for ordinary deformation conditions (Donnell
[41]):
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