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a b s t r a c t

This paper proposes a novel numerical optimization procedure with mixed integer and continuous design
variables for optimal design of laminated composite plates subjected to buckling loads. In the present
optimization problem, the objective function is to maximize the buckling load factor. The design variables
are fibre orientation angles and thickness of layers, in which the fibre orientation angles are integer vari-
ables and thickness are continuous variables. The constraints include the limitation of variables and the
total thickness of the plate. For analyzing the buckling behavior of laminated composite plates, a recently
proposed smoothed finite element method named the cell-based smoothed discrete shear gap method
(CS-DSG3) is employed. For solving the current optimization problems which contain both integer and
continuous variables, an improved different evolution algorithm, named mixed-variable different evolu-
tion (mDE) is proposed. In the mDE, the mutation and selection phases of the original DE are replaced by
an adaptive mutation mechanism and an elitist selection technique, respectively. These improvements
not only help balance effectively the global and local search abilities of the DE, but also help deal with
integer and continuous design variables. The reliability and effectiveness of the proposed optimization
procedure are investigated through some numerical examples for optimal design of laminated composite
plates with 2, 3, 4 and 10 layers subjected to buckling loads. Additionally, the influence of different load-
ing and boundary conditions on the optimal solution is also investigated.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Due to various advantageous properties such as high strength-
to-weight ratio, high stiffness-to-weight ratio and flexibility in
design, laminated composite plates have been increasingly used
in various engineering disciplines like automotive industries, civil
infrastructures, and aerospace structures. In many applications,
the buckling phenomenon which is critically dangerous to struc-
tural components can be observed [1]. Therefore, buckling analysis
of laminated composite plates has attracted considerable attention
from researchers around the world. Many different methods have
been proposed to address this issue. For example, Sherbourne &
Pandey [2] investigated the accuracy and convergence of the differ-

ential quadrature method (DQM) for buckling analyses of compos-
ite plates. Kam and Chang [3] used a simple shear deformable finite
element method based on the first-order shear deformation plate
theory. Wang et al. [4] ultilized a meshless approach based on
the reproducing kernel particle method. Chakrabarti & Sheikh [5]
employed a six-node triangular element plate based on higher
order shear deformation theory. Huang & Li [6] used the moving
least square differential quadrature (MLSDQ) method based on
the first-order shear deformation plate theory. Ni et al. [1] ultilized
both the higher-order shear deformation plate theory and two-
dimensional Ritz displacement functions for an arbitrary edge sup-
port. Liu et al. [7] presented a mesh-free radial basis function based
on third-order shear deformation plate theory. Ferreira et al. [8]
employed wavelets. Nguyen et al. [9] proposed a smoothed quadri-
lateral element (MISQ24). Recently, the NURB-based isogeometric
finite element method was also used for buckling analysis of lam-
inated composite plates [10,11].

Although a variety of numerical methods for analyzing buckling
behavior of the laminated composite plates have been reported, it
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can be seen that the usage of three-node triangular Mindlin plate
elements is somewhat still limited. This paper hence extends a
recently proposed smoothed Mindlin plate element namely cell-
based smoothed discrete shear gap method (CS-DSG3) [12] for
analyzing the buckling behavior of composite plates. In the CS-
DSG3, each triangular element is divided into three sub-triangles,
and in each sub-triangle, the stabilized DSG3 is employed to com-
pute the strains. Then the cell-based strain smoothing technique
on whole the triangular element is used to smooth the strains on
these three sub-triangles. The numerical results showed that the
CS-DSG3 is free of shear locking and achieves the high accuracy
compared to others existing elements in the literature. It has been
successfully extended to analyze various plate and shell problems
such as flat shells [13], stiffened plates [14], FGM plates [15], piezo-
electricity plates [16], composite and sandwich plates [17], plates
resting on viscoelastic foundation subjected to moving loads
[18,19], cracked plates and shells [20,21], and some other exten-
sions [22–24].

It is known that the variation of fibre orientation angles, thick-
ness as well as stacking sequence can help achieve the required
mechanical properties, such as in-plane, flexural and buckling
behavior of composite laminates [25]. As a result, seeking the opti-
mal values of the fibre orientation angles and thickness of layers
for maximizing buckling load has also received much interest from
researchers. Some first studies based on classical approaches and
gradient-based methods can be found in Refs. [26–35]. However,
these methods often give the optimum solution which depends
too much on the initial point provided by users. Thus, if the initial

point is not selected well, especially for the highly-nonlinear opti-
mization problems with many design variables, it is very hard to
obtain the global optimum solution. Moreover, since these meth-
ods usually use gradient information for searching the solution,
they will encounter troubles in dealing with the optimization
problems with mixed integer and continuous design variables. In
recent years, many population-based methods such as genetic
algorithm (GA) [36–38], ant colony optimization (ACO) [39] have
also been developed to overcome limitations of the gradient-
based methods. These methods directly use the information of
the objective function and constraints for searching without using
gradient information. In addition, they have a high probability to
obtain a global solution and can easily solve the mixed variable
optimization problems. However, they often possess a big restric-
tion related to high computational cost, especially when the buck-
ling behavior of composite plates is analyzed by numerical
methods (e.g. finite element method). Therefore, it is really neces-
sary to further develop the global optimization methods which can
obtain the highly-accurate optimum solution with lower computa-
tional cost.

Among population-based optimization methods, the differen-
tial evolution (DE) firstly introduced by Storn and Price 1997
[40], is one of the most popular algorithms. The DE demonstrated
good performance in solving many different engineering problems
with continuous design variables such as communication [41], pat-
tern recognition [42], mechanical engineering [43–48], structural
health monitoring [49,50], artificial neural network training
[42,51]. Compared to the GA and ACO, the DE outperforms both
them in two aspects including the quality of the solution and con-
vergence rate [52,53]. Nevertheless so far, it has not yet been con-
sidered for buckling optimization of the composite plates. In
addition, similar to many other population-based optimization
algorithms, the computational cost of the DE for finding the global
solution is still high, especially for real-world problems in which
the cost for evaluating the objective function and constraints is
expensive [54].

Based on the above considerations, in this paper, we propose a
novel numerical optimization procedure with mixed integer and
continuous design variables for optimal design of laminated com-
posite plates subjected to buckling loads. In this procedure, for
analyzing the buckling behavior of laminated composite plates,
the cell-based smoothed discrete shear gap method (CS-DSG3)
is employed. For searching the optimal solution, an improved

Fig. 1. Model of a laminated composite plate.
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Fig. 2. Three sub-triangles (D1; D2 and D3) created from the triangle 1–2–3 in the
CS-DSG3 by connecting the central point O to three field nodes 1–3.

Initialization Mutation Crossover Selection

Convergence? StopNo Yes

Fig. 3. Flowchart of the DE algorithm.
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