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a b s t r a c t

Asymptotic expansion homogenisation (AEH) is a rigorous homogenisation method that allows to model
the thermomechanical behaviour of periodic materials in an efficient manner. The main advantages of
this method are the reduction of the problem size and the capability of quantifying the strain and stress
levels in the microscale using macroscale results. This method provides explicit equations for its purpose,
an advantage not found on typical homogenisation methods.
This paper presents a pedagogic implementation and validation of AEH using the commercial simula-

tion software ABAQUS. The scope of this work lies on thermoelasticity applied to heterogeneous materi-
als. In this work, guidelines and troubleshooting for a successful implementation are analysed and
discussed. Its purpose is to motivate the use of homogenisation methods, specially the AEH, and to detail
every step needed to implement it using a commercial software. Key points, such as boundary conditions,
computation of characteristic displacements and effective properties are discussed. Given the complexity
of the problem, a series of validation schemes and results are presented and analysed. A user subroutine
code is also presented.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of industrial and engineering materials are
heterogeneous at a given level, consisting on different constituents
that behave differently in some circumstances. Their behaviour can
be dependent on many factors such as: (i) properties, (ii) spatial
arrangements and (iii) volume fractions of constituents [1]. A
direct approach can be done by spatially modelling each con-
stituent of the heterogeneous material. Consequently, both proper-
ties and spatial distributions would be taken into account.
However, this modelling approach often results in prohibiting
computational costs. Therefore, the reduction of the referred costs
without losing the proper characterisation of microstructure is
needed [2]. This need can be fulfilled with homogenisation meth-
ods that replace the heterogeneous material with an equivalent
homogeneous material. Asymptotic expansion homogenisation
(AEH) allows to properly model the thermomechanical behaviour
of heterogeneous materials, having two main tasks: dealing with
a smaller material scale, called microscale, and simultaneously

dealing with a larger structural scale, called macroscale. During
this process, the macroscale is explicitly analysed using the infor-
mation gathered on a detailed analysis of the microscale. The
inverse approach can also be done. The detailing of the material
behaviour in the microscale using the results of the macroscale is
called localisation. Additionally, the asymptotic expansion
homogenisation methodology allows the analysis of a great num-
ber of different microstructures, given the requirement of a peri-
odic Representative Unit Cell (RUC) [3].

Nowadays, homogenisation is rapidly maturing due to the
increasing power of computation. However, this subject dates back
many years and started with homogenisation methods such as
effective medium models of Eshelhy [4], Mori and Tanaka [5],
Hashin–Shtrikman bounds [6], Halpin–Tsai equations [7], self-
consistent approaches of Hill [8] and many others [1]. Afterwards,
a new mathematical homogenisation method emerged as the
asymptotic expansion homogenisation, pioneered by Bensoussan
et al. in 1978 [9]. Then, many authors followed the subject, as
Sanchez-Palencia in 1980 [10], Guedes and Kikuchi in 1990 [11],
Hollister and Kikuchi 1992 [12], Terada and Kikuchi in 1996 [13],
Chung et al. in 2001 [14], Yuan and Fish et al. in 2007 [15], Asada
and Ohno et al. in 2007 [16], Pinho-da-Cruz et al. in 2007 [17],
etc. Yuan and Fish in 2007 carried out an asymptotic
expansion homogenisation implementation in the commercial
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computer-aided engineering software ABAQUS [15]. However, the
homogenisation of the thermomechanical behaviour was not con-
sidered, the extension of the implementation to other problems
raises several issues and the computational effort is not optimised.
In the same year, Asada and Ohno proposed a different asymptotic
expansion homogenisation approach based on an iterativemethod-
ology, where the computation was carried out based on an initial
guess [16]. In this case, the implementation methodology could
be extended to other problems, but the computation effort was
dependent on the quality of initial guess. Commonly, these
approaches lead to large computation times.

A two-dimensional model was developed using the commercial
software ABAQUS, but the extension to a three-dimensional
problem is straightforward. In the scope of this work, the
two-dimensional case was chosen due to its simplicity, however
the extension to a three-dimensional problem corresponds to
tensorial adjustment in the formulation that can be consulted in
[2].

The chosen model requires a programming task, but allows to
control every step in the asymptotic expansion homogenisation
process. Additionally, the paper details the implementation pro-
cess including some pedagogic issues and specifications related
to the implementation in a commercial software, as well as the
troubleshooting of frequent problems. Therefore, it can be a good
starting point for new researchers and students working in simula-
tion modelling using homogenisation methods. In order to help the
programming task, codes are provided as Appendixes. Moreover,
the use of a commercial software allows a quickly implementation
of the presented methodology, when compared to the develop-
ment its own software.

In sum, none of previous authors have fully integrated a ther-
moelastic homogenisation methodology into a simulation com-
mercial software. Furthermore, extensions of the present work
are straightforward and the specific details of the model imple-
mentation might differ between different commercial software,
the concepts and the guidelines on this paper remain valid.

This document starts with the introduction of the asymptotic
expansion homogenisation methodology in its assumptions and
differential formulation, allowing the analysis and discussion of
the finite element approximation of the variational problem and
its implementation. In the end some results, validation schemes
and conclusions are presented.

2. Homogenisation in thermoelasticity: mathematical
formulation

The formulation presented in this section is based on references
[2,14,17,18]. The asymptotic expansion homogenisation is a
homogenisation method capable of modelling the thermomechan-
ical behaviour of periodic materials in an uncoupled and quasi-
static process. The main advantages of this method are: (i) the
capability of reducing the number of degrees of freedom linked
to modelling the thermomechanical behaviour and (ii) allowing
the proper characterisation of periodic microstructures [17].

Consider a linear thermoelastic heterogeneous material associ-
ated to a material body X. The microstructure of X is formed by a
periodic repetition of a representative unit-cell associated to the
region Y [19]. The relation � of the dimensions of the microstruc-
ture and the macrostructure is very small (�� 1) for the majority
of the heterogeneous materials with periodic structure. The ther-
momechanical loading of such materials creates periodic oscilla-
tions on the resulting displacements, stress or strains, being
these oscillations the consequence of the periodic arrangement of
constituents of the material. At this point, it’s common to assume
two distinct scales: x and y for the behaviour of the materials in

the macroscale and in the microscale, respectively [13,17]. Thus,
the variables related to the referred fields become functionally
dependent on both x and y scales, where

y ¼ x=�: ð1Þ
The referred functional dependence is usually called Y-periodicity.
The Y-periodicity of the microstructural heterogeneities reflects
itself on the fact that the thermal expansion tensor a and the elas-
ticity tensor D are Y-periodic in y. In contrast, the material homo-
geneity at the macroscale level results from the fact that these
tensors do not depend on the macroscale system of coordinates x,
resulting

aij ¼ aij yð Þ and ð2Þ

Dijkl ¼ Dijkl yð Þ: ð3Þ
On the macroscale x, the microscale constituents appear over peri-
ods ��1 times smaller than the characteristic dimension of y. Using
Eq. (1), Eqs. (2) and (3) result in

a�ij ¼ aij x=�ð Þ and ð4Þ

D�
ijkl ¼ Dijkl x=�ð Þ; ð5Þ

respectively, where the superscript � states that a and D are �Y-
periodic in the macroscale, x.

Assuming infinitesimal strains and a quasi-static process, the
linear thermoelastic problem is given by the following equations:

@r�
ij

@x�j
þ f i ¼ 0 in X; ð6Þ

e�ij ¼
1
2

@u�i
@x�j

þ @u�j
@x�i

 !
in X and ð7Þ

r�
ij ¼ D�

ijkle
�
kl � b�ijDT

�; ð8Þ
where

DT� ¼ T� � T0; ð9Þ

b�ij ¼ b�ij x=�ð Þ and ð10Þ

b�ij ¼ D�
ijkla

�
kl: ð11Þ

r�
ij and e�ij are the components of the Cauchy stress and strain ten-

sors, respectively. f i;ui and T0 are the loads per unit of volume, dis-
placements and reference temperature, respectively. On the
boundary C of X, the Dirichlet (CD) and Neumann (CN) boundary
conditions can be established as

u�i ¼ �ui in CD and ð12Þ

r�
ijnj ¼ �ti in CN; ð13Þ

where CD [ CN ¼ C and CD \ CN ¼ ø. �ui and �ti are the prescribed val-
ues of displacements and surface load values, respectively. nj are
the components of an outward vector normal to the surface CN.

Considering the existence of two distinct scales, which connect
the material behaviour of the macroscale X and the microscale Y,
the displacement fields can be approximated by an asymptotic
expansion in �, mathematically given by

u�i ¼ uð0Þ
i x; yð Þ þ �uð1Þ

i x; yð Þ þ �2uð2Þ
i x; yð Þ þ � � � ; ð14Þ

where uðrÞ
i x; yð Þ, with r 2 N0 and i 2 f1;2;3g, are Y-periodic

functions in y, called correctors of order r of the displacement field.
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