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a b s t r a c t

In this article, thermal buckling behavior of size-dependent functionally graded nanoplates resting on
two-parameter elastic foundation under various types of thermal environments is studied based on a
new refined trigonometric shear deformation theory for the first time. It is assumed that the FG nanoplate
is exposed to uniform, linear and sinusoidal temperature rises. Mori–Tanaka model is adopted to describe
gradually variation of material properties along the plate thickness. Size-dependency of nanosize FG plate
is captured by using nonlocal elasticity theory of Eringen. Through Hamilton’s principle the governing
equations are derived for a refined four-variable shear deformation plate theory and then solved analyt-
ically. A variety of examples is presented to indicate the importance of elastic foundation parameters,
various temperature fields, nonlocality, material composition, aspect and side-to-thickness ratios on crit-
ical buckling temperatures of FG nanoplate. Hence, the present study provides beneficial results for the
accurate design of FG nanostructures subjected to various thermo-mechanical loadings.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing demands for high structural performance require-
ments, especially in vigorous thermal environments leads to gener-
ating a new sort of composite materials known as functionally
graded materials (FGMs) which are designed to achieve a func-
tional performance with gradually variable properties in one or
more spatial directions. Containing various advantageous proper-
ties, FGMs are appropriate for various engineering applications
and gained intense interest by several researchers [1,2,4,5,6,7,8].
Moreover, nanoscale plate structures have attracted the interest
of some researchers in the field of nanomechanics. Therefore, it
is significant to consider the small size influence in the mechanical
analysis of nanostructures. Due to the lack of a material length
scale, the classical continuum elasticity theory is not capable of
describing the size influence. So, size-dependent continuum theo-
ries such as nonlocal elasticity theory proposed by Eringen [9,10]
are developed to capture the size effects with supposing the stress
at a reference point to be a functional of strain of all points of the
body. Hence, the nonlocal elasticity theory has extensively applied
to analyze the mechanical responses of nanoplates
[11,12,13,14,15,16].

Up to now, several theories are developed to analyze the static
and vibration behaviors of plates [3]. The simplest theory is known
as classical plate theory (CPT) which disregards the influences of
shear deformation and hence overestimates natural frequencies
of plates. To overcome this problem, many shear deformation plate
theories are proposed. The third order shear deformation theory
(TSDT) by Reddy [17] which is free from any shear correction factor
and satisfies the condition of zero transverse shear strain at the top
and bottom of the plate was employed by, Ferreira et al. [18],
Oktem et al. [19], and Taj et al. [20].The third order shear deforma-
tion theory estimates better results compared to CPT but research-
ers have obtained more accurate results by adopting various non-
polynomial shear deformation theories. In non-polynomial shear
deformation theories, the in-plane displacements are the function
of thickness coordinate. The function may be trigonometric, expo-
nential or hyperbolic. Zenkour [21] proposed a refined sinusoidal
theory for FG plates embedded in elastic medium. Thai and Vo
[22] also recommended sinusoidal function but they considered
transverse deflection due to bending as well as due to shear. The
tangential function was proposed by Mantari et al. [23]. Moreover,
Grover et al. [24] implemented a secant function based shear
deformation theory for vibration and buckling analysis of compos-
ite plates. Also, Neves et al. [25] studied static and vibration behav-
ior of FG plates using a quasi-3D sinusoidal shear deformation
theory. The hyperbolic shear strain function was suggested by
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Soldatos [26], Akavci [27] and Mahi and Tounsi [28]. Exponential
form of displacement field is proposed by Karama et al. [29] and
Mantari et al. [30]; whereas, Aydogdu [31] used logarithmic form
of displacement field. Recently, inverse trigonometric shear defor-
mation theory recommended by Sahoo and Singh [32] and Thai
et al. [33]. Also, An inverse hyperbolic shear deformation theory
for isotropic and FG sandwich plates is proposed by Nguyen et al.
[34]. A general assessment of a new inverse trigonometric shear
deformation theory for laminated composite and sandwich plates
using finite element method is conducted by Grover et al. [35].
Most recently, Kulkarni et al. [36] developed a shear deformation
theory namely inverse trigonometric shear deformation theory
(ITSDT) for functionally graded macro plates. Therefore, it is inno-
vative to model the smart FG plates especially at nanoscale via a
higher order refined theory with only four unknowns.

Referring to the mechanical analysis of size-dependent plate
structures, linear free flexural vibration behavior of size dependent
functionally graded (FG) nanoplates is investigated by Natarajan
et al. [37] using the isogeometric based finite element method. In
this work, they applied the nonlocal constitutive relation based
on Eringen’s differential form of nonlocal elasticity theory. Using
an exact analytical approach, free vibration analysis of thick circu-
lar/annular FG Mindlin nanoplates is investigated by Hosseini-
Hashemi et al. [38]. Using nonlocal TBT and EBT, S�ims�ek and Yurtcu
[39] investigated bending and buckling of FG nanobeam by analyt-
ical method. The resonance behaviors of functionally graded
micro/nanoplates using Kirchhoff plate theory is studied by Nami
and Janghorban [40]. In this study, they adopted the nonlocal elas-
ticity theory and strain gradient theory with one gradient parame-
ter to consider the small scale effects. Daneshmehr and Rajabpoor
[41] presented a nonlocal higher order plate theory for stability
analysis of FG nanoplates subjected to biaxial in-plane loadings
using generalized differential quadrature (GDQ). Based on a modi-
fied couple stress theory, a model for sigmoid functionally graded
material (S-FGM) nanoplates on elastic medium is developed by
Jung et al. [42]. Rahmani and Pedram [43] Analyzed the size effects
on the vibration of FG nanobeams based on nonlocal TBT. The non-
linear free vibration of FG nanobeams with fixed ends, i.e. simply
supported–simply supported (SS) and simply supported–clamped
(SC), using the nonlocal elasticity within the framework of EBT
with von kármán type nonlinearity is studied by Nazemnezhad
and Hosseini-Hashemi [44]. Bedroud et al. [45] analyzed axisym-
metric/asymmetric buckling of moderately thick circular and
annular functionally graded (FG) nanoplates under uniform com-
pressive in-plane loads. Also, based on surface elasticity theory
Ansari et al. [46] investigated the buckling and vibration responses
of nanoplates made of functionally graded materials (FGMs) sub-
jected to a linear thermal loading in pre-buckling domain with
considering the effect of surface stress. Also, a nonlocal higher-
order shear deformation beam theory for vibration analysis of
size-dependent functionally graded nanobeams is present by Ebra-
himi and Barati [47]. Zare et al. [48] analyzed the natural frequen-
cies of a functionally graded nanoplate for different combinations
of boundary conditions. Thermal buckling can possess a destruc-
tive influence on the safety of structures and hence it is regarded
as an undesired phenomenon in several studies [1,49]. According
to the above-mentioned studies, one can notice that the influences
of various temperature environments on buckling behavior of
functionally graded nanoplates embedded in elastic foundation is
not yet conducted.

In this paper, a new four-variable shear deformation plate the-
ory is developed for the thermo-mechanical buckling analysis of
simply supported FG nanoplates on elastic foundation exposed to
three kinds of thermal loading. Implementing Hamilton’s principle,
the nonlocal governing equations are obtained and they are solved
via Navier solution method. In the end, the influences of the elastic

foundation, different thermal loads, gradient index, nonlocal
parameter, aspect and side-to-thickness ratios on the buckling of
embedded nanosize FG plates is explored. Some novelties of the
present study are stated as follows:

� A new four-variable shear deformation theory is extended for
FG nanoplates embedded in elastic foundation containing a
cotangential inverse shear strain function without requiring
shear correction factors.

� Instead of a classical or power-law model, the material proper-
ties of an embedded FG nanoplate in thermal environments are
modeled via Mori–Tanaka homogenization scheme, since it is
more realistic and provides more accurate results.

� Various types of thermal loading including uniform, linear and
sinusoidal temperature rises are considered where this is the
first time that sinusoidal temperature change is applied in the
analysis of FG nanostructures.

2. Governing equations

2.1. Mori–Tanaka FGM plate model

According to Mori–Tanaka homogenization technique the local
effective material properties of the FG nanoplate such as effective
local bulk modulus Ke and shear modulus le can be calculated:

Ke � Km

Kc � Km
¼ Vc

1þ VmðKc � KmÞ=ðKm þ 4lm=3Þ
ð1Þ

le �lm

lc �lm
¼ Vc

1þVmðlc �lmÞ=½ðlm þlmð9Km þ8lmÞ=ð6ðKm þ2lmÞÞ�
ð2Þ

where subscripts m and c denote metal and ceramic, respectively
and the volume fraction of the ceramic is associated to that of the
metal in the following relation:

Vc þ Vm ¼ 1 ð3Þ
The volume fraction of the ceramic constituent of the FG nano-

plate is assumed to be given by:

Vc ¼ z
h
þ 1
2

� �P

ð4Þ

Here p is the gradient index which determines the material dis-
tribution through the thickness of the plate and z is the distance
from the mid-plane of the FG nanoplate. Therefore, the effective
Young’s modulus (E), based on Mori–Tanaka scheme can be
expressed by:

EðzÞ ¼ 9Kele

3Ke þ le
ð5Þ

The thermal expansion coefficient (a) may be expressed by

ae � am

ac � am
¼

1
Ke
� 1

Km

1
Kc
� 1

Km

ð6Þ

The material composition of FG nanoplate at the upper surface
(z ¼ þh=2) is supposed to be the pure ceramic and it changes con-
tinuously to the opposite side surface (z ¼ �h=2) which is pure
metal as shown in Fig. 1.

2.2. Kinematic relations

Based on the four-variable shear deformation plate theory, the
displacement field at any point of the plate can be written as:
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