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a b s t r a c t

A solution of the free vibrations problem formulated for a composite lattice cylindrical shell with
clamped edges is presented in this paper. The lattice shell is composed of a large number of helical
and hoop ribs and modelled as a continuous orthotropic thin cylinder with effective stiffness parameters.
A solution of the equations of motion of the shell is based on the Fourier decomposition and the Galerkin
method and yields an analytical formula for the calculation of a fundamental frequency. It is demon-
strated that starting from a certain density of the lattice structure the value of fundamental frequency
does not depend on the number of helical ribs. This result is verified and confirmed using finite-
element analysis. Applications of this formula to the determination of the parameters of lattice structures
and design of composite lattice shells with required fundamental frequencies are demonstrated using
numerical examples. It is shown that the analytical formula presented in this article provides an efficient
tool for rapid calculation of the fundamental frequency which can be used for the assessment of the struc-
tural stiffness of the composite lattice shells in the design analysis.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Lattice cylindrical shells manufactured by filament-winding
from composite materials with high elastic moduli have unique
specific strength and stiffness characteristics. Due to these proper-
ties, the lattice shells are efficiently utilised as interstage adapters
and bodies of spacecraft [1,2]. Conventionally, mechanical analysis
of lattice cylindrical shells is performed using continuous and/or
discrete models. In the continuous model, the lattice cylinder is
replaced with the ‘‘quasi-equivalent” continuous orthotropic shell
having effective stiffness parameters corresponding to the original
lattice structure. This approach, due to its relative simplicity, is
widely used in the structural analysis and design of composite lat-
tice shells. Continuous models of various popular composite aniso-
grid lattice structures are considered in the monographs published
by Vasiliev [3], and Vasiliev and Morozov [4]. Various analyses of
lattice shells based on the continuous models were reported by
Totaro and Gurdal [5], Buragohain and Velmurugan [6], Paschero
and Hyer [7], Totaro [8,9], Zheng et al. [10].

The discrete models are built using finite-element modelling
and normally could be composed of the beam, shell, or solid

elements. Results of finite-element analyses of composite lattice
shells can be found in the papers published by Hou and Gramoll
[11], Zhang et al. [12], Frulloni et al. [13], Fan et al. [14], Morozov
et al. [15].

The filament-wound anisogrid composite lattice cylindrical
shells utilised in aerospace structures are subjected to time-
dependent operational loads. Hence, the dynamic analysis involv-
ing a determination of vibration frequencies and modes is an
important part of the design process for such structural compo-
nents. Often, the solutions of dynamic problems related to the
determination of the fundamental frequency of the lattice shells
are employed at the design stage. Using the value of fundamental
frequency, the overall stiffness and mass of the shell structure
can be assessed. This is due to the fact that this parameter reflects
a combined mutual effect of the bending stiffness and the mass-
per-unit-length of the shell wall. To perform such an assessment,
multiple analyses are to be completed at the design stage. Thus,
it is advantageous to have a compact analytical equation that
would provide the value of the fundamental frequency without
the need for numerical modelling and analysis. It should be noted
that to date not too many studies of dynamic behaviour of compos-
ite anisogrid lattice cylindrical shells have been reported in the lit-
erature. For instance, an applied method of calculations of the
natural frequencies of the composite lattice shells was presented
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by Vasiliev and Skleznev [16] and Skleznev [17]. In their work, the
shells were modelled as the thin-walled rods characterised by
effective averaged stiffness parameters. Free vibrations of a can-
tilever composite lattice cylindrical shell with the rigid disk
attached to its free end have been analysed by Lopatin et al. [18]
using semi-membrane theory of orthotropic cylindrical shells.
Nevertheless, a growing popularity of the composite anisogrid lat-
tice cylindrical shells in various aerospace applications calls for
further studies of their vibrations. In particular, as mentioned ear-
lier, the determination of the fundamental frequencies of the cylin-
drical lattice shells with different types of support is imperative in
the design analyses. In this article, a compact analytical formula for
rapid calculations of the fundamental frequency of the composite
lattice cylindrical shell with fully clamped ends is obtained based
on the continuous model of orthotropic shell having effective stiff-
ness parameters matching those of the original lattice structure. A
solution of the equations of motion of the shell is based on the
Fourier decomposition and the Galerkin method. Results of para-
metric analyses performed for the shells with various numbers of
helical ribs show that once a certain density of the lattice structure
is reached, further increase in the number of helical ribs does not
affect the value of fundamental frequency. This important conclu-
sion has been verified using the finite-element analysis. It is also
demonstrated how the structural parameters of the lattice shell
can be selected using the aforementioned analytical formula.

2. Governing equations

Consider a composite anisogrid lattice cylindrical shell with
both ends clamped as shown in Fig. 1. The lattice structure of the
shell is composed of two regular systems of ribs: the helical and
hoop ones. It is assumed that the density of the lattice structure
(number of ribs per unit length) is high enough to employ a contin-
uous model of the shell. According to this, the lattice shell is
replaced with the continuous orthotropic one having equivalent
effective stiffnesses. The middle surface of the shell of radius R
and length l is referred to the curvilinear coordinate frame abc as
shown in Fig. 2. The coordinate axes a and b are directed along
the axial and hoop directions, respectively. The axis c is orthogonal
to the middle surface. The motion of the shell is modelled using
classical theory of orthotropic cylindrical shells in the following
form [3]:
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in which t is the time, Bq is the mass of the shell per unit area,
Na;Nb and Nab are the membrane stress resultants;
Ma;Mb and Mab are the bending and twisting moments (resultant
couples); u and v are the displacements of the points of the middle
surface along the axes a and b, respectively; w is the deflection in
the radial direction.

The equations given by Eq. (1) should be supplemented by con-
stitutive equations, relations between displacements and strains,
and boundary conditions. The constitutive equations has the form

Na ¼ B11ea þ B12eb; Nb ¼ B21ea þ B22eb; Nab ¼ B33eab
Ma ¼ D11ja þ D12jb; Mb ¼ D21ja þ D22jb; Mab ¼ D33jab

ð2Þ

where ea; eab; eb are the membrane strains of the middle surface;
ja;jb;jab are bending and twisting deformations of the middle sur-
face; B11;B12;B22;B33ðB21 ¼ B12Þ and D11;D12;D22;D33ðD21 ¼ D12Þ are
the membrane and bending stiffnesses of the shell wall. The
strain–displacements relationships are given by
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The system of equations, Eqs. (1)–(3) is of eighth order with
respect to the variables a and b. Hence, four boundary conditions
are required at each end a ¼ 0 and a ¼ l. In the case under consid-
eration, i.e. for the fully clamped edges, these conditions are

u ¼ 0; v ¼ 0; w ¼ 0;
@w
@a

¼ 0 ð4Þ

Substitution of Eqs. (2) and (3) into Eq. (1) yields the following
governing equations of motion written in terms of displacements
u, v , and deflection w:

Fig. 1. Clamped–clamped anisogrid lattice cylindrical shell. Fig. 2. Clamped–clamped orthotropic continuous cylindrical shell.
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