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a b s t r a c t

In this work we are interested to provide an alternative way to model particulate composites by the Finite
Element Method. Our proposal allows the inclusion of particles with any geometry, quantity and any reg-
ular or random arrangement in continuous matrix. Accordingly, the main feature of the formulation is:
maintaining the geometry and the discretization of the matrix, to introduce a given distribution of par-
ticles without increasing the number of degrees of freedom or change the initial mesh of the problem. In
this sense a direct FEM approach for particulate composites arise.
Here, both the matrix and particles are considered elastic and totally connected, i.e., degeneration of

the involved materials is not allowed and perfect adherence between matrix and particles phases is
adopted, thus the interface or the transition zone between phases is not modeled.
The proposed formulation already includes geometrically exact description allowing the development

of large displacements and moderate strains. Examples are presented to validate the formulation con-
fronting it with usual techniques of homogenization and laboratory experiments. Furthermore, the pos-
sibilities of the proposed technique are shown in an original example.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known the fact that composites mix two or more
materials in order to obtain, for a given application, a new material
with physical and economic properties better than those presented
separately by each constituent material. Composite materials are
used in both traditional applications such as reinforced concrete
and in recent applications such as lightweight composite materials
of carbon fibers embedded in epoxy matrix.

Although we are always admitting approximations, we can
divide composites into four categories, particulate, reinforced by
fibers, laminated and combined composites [1]. The latter combi-
nes any of the three basic arrangements with each other in any
proportion. It should be clarified that in this study we assume an
extended definition given by [2] that composite materials are those
whose predominant phases can be distinguished in macroscopic or
microscopic forms, since the continuum mechanics can be applied
in the solution of each phase of the material.

A recent and complete review of several aspects of the evolution
of research on composite materials can be seen in [3].

Limiting the discussion to the mechanical behavior of materials,
object of this study, the challenges associated with the

development and application of composite materials are, as for
any other material, associated to aspects of physical characteriza-
tion and development of rheological/mathematical models which
can predict its behavior [4–9]. In this sense the studies related to
composite materials are divided into three ranges: the macro-
scale, meso-scale and nano-scale. The first is concerned with the
overall behavior of the structural components, even though the
geometric size of stages is very small. The meso-scale addresses
the interdependent behavior of the reinforcement and the matrix,
i.e., the interface stress and its relative detachment. Finally, the
nano-scale is interested in setting up the materials on its molecular
and atomic level, and its influence on the behavior of the material
in their meso and macro-level.

The interest of this study is to contribute in the modeling of the
macro-mechanical behavior of composite materials through the
FEM regardless particle size [10–18]. More specifically, it seeks to
provide an alternative way (called here direct) to model composite
particulate materials by Finite Element Method based on positions
[19–23]. Our proposal enables the inclusion of a very large number
of particles with any geometry, quantity and with any regular or
random arrangement in continuous. In this sense, maintaining
the geometry and the continuous matrix, defined for convenience
of the examined solid boundary conditions, the main feature of
the proposed formulation is to introduce a given distribution of
particles into the system without increasing the number of degrees
of freedom or change the initial mesh of the problem.
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It is noteworthy that the proposed technique differs from those
based on the partition of the unit, widely used in procedures
related to the inclusion of fiber in volumes [24–26], because the
inclusion of particulate reinforcement is made here directly by
kinematic relationships between nodes that represent the particles
and the degrees of freedom which represent the matrix. The latter
are the only ones to be considered in the solution of the numerical
system, such that the order of the system is not affected by the
number of particles considered.

It is also worth noting that in the proposed technique it is not
required the coincidence of the nodal positions, even of surfaces
or interface zones. Thus, the macroscopic behavior of the material
will be simulated from the basic properties of the constituents,
without the need of developing numerical or analytical homoge-
nization techniques like the ones present in the literature
[7,8,27,28]. In this sense a direct FEM approach for particulate
composites arise, i.e., it is possible to analyze a general structure
or body without using homogenized material characteristics. How-
ever, if it is of interest, our formulation can be used to numerically
extract homogenized elastic properties of particulate composite
reducing the necessity of laboratory experiments and also used
to perform indirect applications, using the extract homogenized
properties.

This work is original and intends to publish the proposed formu-
lation so that other researchers can take advantage of its unique fea-
tures and improve it to covers more complex applications. Here,
both thematrix and particles are considered elastic and totally con-
nected, i.e., itwill not be alloweddegeneration of the involvedmate-
rials and perfect adherence betweenmatrix andparticles is adopted.
Thus the interface or transition zonebetweenphases is notmodeled.
It is important to stress that a numerical strategy (deterministic and
aleatory) of mesh and particles position generation is used in order
to allow more general applications. One basic computational code
for particle generation is available at Appendix A.

The proposed formulation already includes geometrically exact
description allowing the development of large displacements and
moderate strains. Examples are presented to validate the formula-
tion confronting it with usual techniques of homogenization and
laboratory experiments. Furthermore, the possibilities of the pro-
posed technique are shown in an original example.

2. The Finite Element Method based on positions – 2D phases
modeling

In this work any phase of the particulate composite is modeled
using the Finite Element Method based on positions. Thus, it is
important to provide a short description in order to enable its easy
reproduction by other researchers interested in the subject. We
started the description from the total energy stationary principle
and describe the formulation of the FEM based on positions. In
the absence of dissipative potentials and considering isothermal
and static applications the total energy of any body, Fig. 1a, and
its variation are written as.

P ¼ U þ P dP ¼ dU þ dP ¼ 0 ð1Þ
where U is the strain energy stored in all phases of the composite
(matrix and particles) and P is the potential energy of external
forces, see Fig. 1.

Bearing in mind that both particles and matrix are modeled
here by two-dimensional finite elements, Fig. 1b, we describe the
initial and final body configuration from the kinematic description
of a generic two-dimensional solid finite element (membrane) as
shown in Fig. 2. It should be noted that the approximation order
of the finite element shown in Fig. 2 is merely illustrative and that
the formulation is described for any element approximation order.

We propose the following guide to define the formulation. First
we define the change of configuration function of a finite element
by writing the associated Green strain. Next, we define the specific
strain energy to be integrated in the finite element volume, result-
ing in the composite strain energy as a function of nodal positions.
At this point it appears the novelty of the formulation, which is the
inclusion of particles without the addition of new degrees of free-
dom in the discretization previously developed for the matrix.
Then we include the potential of the external conservative forces
and apply the total energy stationary principle resulting in the
no linear equilibrium equations. Finally, the Newton–Raphson pro-
cedure is used to solve the nonlinear system achieving the
searched solution.

2.1. Kinematics and strain energy

In Fig. 2 letter B0 represents the initial configuration of a finite
element of any phase of the composite and letter B represents its
current configuration. The dimensionless space B1 is used to gener-

ate the Lagrange polynomials /‘ that compose the initial f 0i and

final f 1i mappings as:

f 0i ¼ xiðn1; n2Þ ¼ /‘ðn1; n2Þ � X‘i e f 1i ¼ yiðn1; n2Þ ¼ /‘ðn1; n2Þ � Y ‘i

ð2Þ
in which index notation is applied, i.e., repeated indices represents
summation. Both in Eq. (2) as in Fig. 2 xi and yi indicate coordinates
at initial and current configurations, respectively. Index ‘ indicates a
finite element node while X‘i and Y ‘i represent, respectively, the ini-
tial and current nodal coordinates. To simplify the understanding
we accept, in Eq. (2), the coordinates inside the continuum xi as

the mapping f 0i and the current coordinates yi as the mapping f 1i .
In order to assemble the method we are interested in the gradi-

ent of the change of configuration function (or deformation func-
tion) of a portion of any phase described by the FEM, i.e., [29]:

Grad ~f
� �

¼Grad ~f 1 � ~f 0
� ��1

� �
¼Grad ~f 1

� �
�Grad ~f 0

� �� ��1
¼A1 � A0

� ��1

ð3Þ

The gradients of the mappings, i.e., A0 and A1 are easily
determined, since we know the initial and current coordinates
of the nodes of the finite element. The initial coordinates are
known from the mesh generation process and, as the proposed
formulation is geometrically non-linear, the current coordinates
are known as a trial for the iterative process of solution. In
the numerical process, the integration of the domain densities

is accomplished by full Hammer quadrature and, therefore, A0

and A1 are numerical matrices of dimension 2. Thus, A0 and

A1 are given by:

A0
ij ¼

@f 0i
@nj

¼ /‘;jX‘i and A1
ij ¼

@f 1i
@nj

¼ /‘;jY ‘i ð4Þ

From the gradients of the mappings, Eq. (4), and the deforma-
tion gradient, Eq. (3), one writes the Green strain E as:

E ¼ 1
2

At � A� I
� � ¼ 1

2
C � Ið Þ or Ek‘ ¼ 1

2
AikAi‘ � Ik‘ð Þ ð5Þ

in which C is the well-known right Cauchy–Greeen stretch tensor.
From the Green strain one writes the expressions of the specific

strain energy which defines, respectively, the plane stress or the
plane strain Saint–Venant–Kirchhoff constitutive laws.

uPStress ¼ 1
2

K E2
11 þ E2

22

� �
þ 2mK E11E22ð Þ þ 2G E2

12 þ E2
21

� �n o
ð6Þ
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