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a b s t r a c t

This paper gives a theoretical background and compares two analytical approaches, thin- and thick-
walled models, analyzing composite cylindrical tubes under thermo-mechanical loadings. First, a theoret-
ical background is introduced, and a lamination theory and an elasticity theory for thick-wall tubes are
recalled. A systematic parametric study for various geometrical, material and load settings was
performed to find out the difference between analyzed calculation approaches. It was generally observed,
that the Classical Lamination Theory can be successfully applied for pressure loads, however this plane-
stress assumption may generate remarkable errors if thermal loads are introduced. It is especially the
case for highly orthotropic cylinders. The generalization of the achieved results allowed to recommend
a new criterion for the selection of an appropriate calculation model. The proposed measure incorporates
simple forms of tubes’ geometrical parameters (D/t) and material factor (C22/C33). Thanks to the applied
approach the importance of through-thickness stresses can be quickly assessed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical behavior of pressurized cylinders made of an
isotropic material is very well elaborated. The literature delivers
a thick walled model based on Lamé theory, which incorporates
principle stresses in all three directions, and a thin wall model,
which neglects radial stresses [1–7]. Normally, it is assumed that
if tube’s diameter-to-thickness ratio, D/t is more than 20, the radial
stresses are an order of magnitude smaller than the other stress
components. In this case a simplified, thin-wall assumption could
be successfully applied. This approach may not work however, if
a laminated cylinder is considered. In this case stresses within
the tube are not related only to D/t ratio, but may be dependent
on material properties (different for various plies), and lay-up
design (layer thicknesses and orientations). For this reason it is
frequently accepted that diameter-to-thickness ratio cannot be
treated as the only factor allowing to decide if a plane-stress model
may be used for a particular design case.

The fundamental theoretical background for analysis of the ani-
sotropic bodies was provided by Lakhnitskii [8], and his work has
been referenced later in the large number of textbooks dealing
with composites [9–12]. The application of the orthotropic mate-
rial model into cylindrical structures was given by Scherrer [13],
Pagano [14], Wilson and Orgill [15], and Pindera [16]. The solid

description of the analytical solution for the laminated circular
tube subjected to the mechanical loading was provided by Her-
akovitch [17]. Also hybrid structures, like Fiber Reinforced Metal
(FRM), or Fiber Metal Laminates (FML) are of interest, [18–20].
Today, with growing popularity of numerical methods, theoretical
investigations are strongly supported by FEM analyses [21–23].

However, even if the literature covering the theory and practice
of composite cylinders is quite reach, the systematic studies com-
paring two different calculation models, thick- and thin-walled, are
not common. The work described in this paper compares both
above approaches. The basic information about a classical lamina-
tion concept and an elasticity theory for thick-walled orthotropic
tubes is given in Section 2, providing the insight into the applied
material models and constitutive relations. Next, the numerical
example is presented, and calculations managed for different loads,
diameter-to-thickness ratios and material properties are described.
The outcome of the study delivers a proposal of new criterion
allowing to assess if the plane-stress assumption could be safely
applied to the particular design case. The concluding remarks are
given in the last section of the article.

2. Theoretical investigation

2.1. Isotropic cylinder

In order to investigate a difference between thin- and thick
walled theories for pressurized cylinders, the analysis of an
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isotropic structure will be recalled. The well known Lamé theory
states that the hoop and radial stresses in a pressurized cylinder
can be described as:
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where p in an internal pressure acting on the inner surface, and R1
and R2 are the inner and outer radii, respectively.

Focusing only on the highly stressed internal surface (r = R1),
and expressing the diameter-to-thickness ratio as K, one may
reformulate Eq. (1) to:
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where:

K ¼ D1

t
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where D1 is an internal diameter and t is the wall thickness of the
cylinder.

Based on Eq. (2) it is possible to state, that for large diameter-to-
thickness ratio (K � 10) the hoop stress could be quite well esti-
mated by Eq. (4), as proposed also by a thin-wall model:

rU ¼ p
K2

2ðK þ 1Þ þ 1

" #
! p

K
2
¼ pD1

2t
¼ ~rU ð4Þ

The relative error between Lamé approach and thin-wall model
in the case of an isotropic, pressurized cylinder depends only on
the diameter-to-thickness ratio, and may be calculated as:

d ¼ rU � ~rU
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With the help of Eq. (5) one can simply estimate that the appli-
cation of the thin-wall model into a pressurized cylinder, having
K = 20, can introduce an error in stress calculation at the level of
about 5%. It should be also noted, that even smaller error may be
achieved, if a mean diameter (not D1) is used in Eq. (4).

Lamé theory states also, that radial stresses vary across the wall
thickness – from the value equal to �p, at the inner surface, to zero
– at the outer surface. While the thin-wall theory totally neglects
stresses across the thickness direction. If an unconstraint isotropic
cylinder subjected to the temperature load is considered, both
models similarly predict that the thermal strains will not generate
stresses. It is not the case for a laminated tube, where the thermal
stresses will be generated.

However, the comparison between these two theories is not so
straightforward, if an anisotropic material, or orthotropic compos-
ite should be investigated. In this case the difference is not only
affected by geometrical parameters of the cylinder, but also the
material properties, which are different in principle directions.

2.2. Classical Lamination Theory

The thin-wall composite tube may be analyzed with the use of
well-established Classical Lamination Theory, CLT. It basically con-
siders plane-stress state, assuming that radial stresses in thin
cylinders are significantly smaller than the other stress compo-
nents, thus may be ignored. Such assumption simplifies the calcu-
lation process, therefore it is popular in industrial applications. In
this classical approach [17] the stress–strain relation is character-
ized by an equivalent generalized force (N, M) – generalized strain
(e0,j) system:
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where
N, M are vectors of forces {Nx, NU, NxU} and moments {Mx, MU,

MxU}, respectively;
NT, MT refer to vectors of thermal forces and thermal moments,

respectively;
e0, j are vectors of strains due to in-plane forces and strains due

to moments (curvatures), respectively;
A, D and B are called tension stiffness, bending stiffness and cou-

pling stiffness matrices respectively. They are calculated as
follows:
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where [Q]k is the reduced stiffness matrix of a single kth lamina,
which is spaced from the neutral plane of the laminate by distance
z, and t is the total thickness of the laminate.

The reduced stiffness matrix [Q]k defines the relation between
stresses and strains for a single lamina, as:
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The vector of strains in a single lamina is an algebraic sum of
mid-plane strains, curvatures and thermal strains:

ek ¼ e0 þ zj� eT ð9Þ
where thermal strain vector eT reads:
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DT is the temperature change, and aj are thermal expansion
coefficients in respective directions.

It should be underlined, that the matrix B plays an important
role in the lamination theory, since it causes complex interaction
between the in-plane loads and bending effects (out-of-plane
strains). However, composite structures are typically designed in
such a way that all components of Bmatrix are zero, therefore gen-
erated stresses are only the result of in-plane strains, e, driven by
in-plane forces, N.

2.3. Thick-walled composite cylinder

The thick-walled analytical model used to study a composite
cylinder under thermo-mechanical load assumes a general ortho-
tropic laminate. In the most universal case, there are 15 unknowns
(3 displacements, 6 strains and 6 stresses) to be derived from the
equilibrium, constitutive, and continuity equations. Using these
relations, and neglecting the radial shears, one can prove [17,23],
that the radial, axial and tangential displacements can be calcu-
lated as:

wðrÞ ¼ Ark þ Br�k þ Ce0x r þXc0r2 þWrDT
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vðx; rÞ ¼ xrc0
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where: A, B, ex0, c0 are constants of integration – to be determined
from the boundary conditions, and: k, C, X, W are material coeffi-
cients, defined as:

k ¼
ffiffiffiffiffiffiffi
C22
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s
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;
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