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a b s t r a c t

Functionally graded materials have become more popular in recent decades due to its ability of efficient
utilization of the constituents materials. The structural functionally graded plate (FGP) has variation of
the properties in the thickness direction according to power law or exponential law. A recently developed
non-polynomial shear deformation theory named as inverse trigonometric shear deformation theory
(ITSDT) has proved its accuracy and efficiency in modeling and analyses of laminated composite and
sandwich structures. However, its efficiency for the FGP has not examined so far in the literature. In
the present study, an attempt is made to extend ITSDT for the static and buckling analysis of FGP. An ana-
lytical solution for all edges simply supported FGP is proposed in this work. The bending analysis includes
calculation of in-plane and transverse displacements, along with the calculation of in-plane and
transverse normal and shear stresses. The buckling analysis includes calculation of critical buckling load
for various conditions. Also, the effect of power index, aspect ratio, span to thickness ratio, uniaxial and
biaxial loading are studied. From the results, it is observed that the theory accurately predicts the static
and buckling responses of FGP.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The functionally graded material (FGM), as the name suggests,
is a composite material for which the properties of the material
vary continuously in one or many directions. For the structural
applications generally, functionally graded plates (FGPs) are used
for which the properties vary along the thickness. The continuous
variation of the properties, which may be according to power law
or exponential law, ensures the smooth variation of transverse
shear strength across the thickness. The FGPs find their applica-
tions in many advanced engineering industries such as aerospace,
nuclear and biomedical. This increase in applicability of FGMs has
attracted the attention of many researchers. Several research
papers are available for the structural analyses of FGPs using elas-
ticity solution as well as various shear deformation theories. The
exact 3D solution by Kashtalyan [1] and Zenkour [2] provides
benchmark for the analysis. Finding exact solution is a complex
process and moreover it is possible only for a few special cases.
Hence there is need of shear deformation theories which facilitates

to find solution in much simpler way and with reasonable accu-
racy. Most of the shear deformation theories are two dimensional
and assume plane stress condition which neglects transverse nor-
mal stress. The most fundamental deformation theory is classical
plate theory (CPT) which assumes the plane normal to the mid-
plane before bending remains plane and normal after bending. It
neglects the effect of all transverse stresses and is less accurate.
Hence it yields accurate results for thin plates only. Feldman and
Aboudi [3], Javaheri and Islami [4] and Chi and Chung [5] have
obtained static response of FGPs using CPT. The disadvantage of
CPT was overcome by first order shear deformation theory (FSDT)
proposed by Reissner [6] and Mindlin [7] which considers
the effect of transverse shear deformation. According to FSDT, the
transverse strains are constant throughout the thickness of plate
which is unrealistic and requires a shear correction factor to nullify
transverse shear strains on the top and bottom of the plate.
Praveen and Reddy [8], Chinosi and Croce [9], Singha et al. [10],
Alieldin et al. [11], Wen and Aliabadi [12] and Castellazzi et al.
[13] adopted FSDT for the static analysis of FGPs. Nguyen et al.
[14] also used FSDT but with modified shear correction factor, they
showed that the shear correction factor for FGPs depends upon the
power index. The third order shear deformation theory (TSDT) by
Reddy [15] which is free from any shear correction factor and
satisfies the condition of zero transverse shear strain at the top
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and bottom of the plate was employed by Reddy [16], Ferreira et al.
[17], Oktem et al. [18], Tran et al. [19] and Taj et al. [20]. The third
order shear deformation theory provided better results compared
to CPT and FSDT but researchers have obtained more accurate
results by adopting various non-polynomial shear deformation
theories. In non-polynomial shear deformation theories, the in-
plane displacements are the function of thickness coordinate. The
function may be trigonometric, exponential or hyperbolic.
Touretier [21] recommended sinusoidal function, Zenkour [22]
suggested four variable theory with same function. Thai and Vo
[23] also recommended sinusoidal function but they considered
transverse deflection due to bending as well as due to shear. The
tangential function was suggested by Mantari et al. [24]. Soldatos
[25], Akvasi [26] and Mahi et al. [27] have suggested hyperbolic
shear strain function for the analysis. Saldatos [25] used sine
hyperbolic function; whereas, Akvasi [26] and Mahi et al. [27] sug-
gested tangential hyperbolic shear strain function. Inverse trigono-
metric function is suggested by Thai et al. [28,29]. Thai et al. [28]
used inverse tangential function; whereas, Thai et al. [29] proposed
inverse tangential as well as inverse sinusoidal function. Exponen-
tial form of displacement field has been used by Karama et al. [30]
and Mantari et al. [31]; whereas, Aydogdu [32] used logarithmic
form of displacement field. Mantari et al. [33,34] have adopted
the combination of trigonometric and exponential function for
the analysis. Grover et al. [35] and Nguyen et al. [36] proposed a
theory with inverse hyperbolic function. Grover et al. [35] pro-
posed the theory for laminated plates and sandwich structures;
whereas, Nguyen et al. [36] implemented the proposed theory for

FGPs. The sinusoidal inverse hyperbolic function proposed by
Grover et al. [35] has been adopted recently by Nguyen et al.
[36] for the analysis of different FGPs showing that the function
yields accurate results.

In the present work, the shear deformation theory with cotan-
gential inverse trigonometric function, developed by Grover et al.
[38] has been extended for the bending and stability analyses of
FGPs. The theory yields quite accurate results when applied to lam-
inate and sandwich structures; however, the accuracy of prediction
for FGPs is the aim of the present research work.

2. Mathematical formulation

The geometry of a functionally graded plate is as shown in
Fig. 1. The dimensions of the plates are a � b � h, where ‘a’ is the
length, ‘b’ is width and ‘h’ is thickness of the plate. The gradation
of material properties is in the transverse direction with metal
and ceramic being the typical constituents. Aluminum/Alumina
(Al/Al2O3) and Aluminum/Zirconia (Al/ZrO2) are the examples of
the functionally graded plate.

2.1. Material variation laws

The constituent elements of FGP are varying in transverse
direction from bottom, where it is metal rich to the top, where
the surface is ceramic rich. Macroscopically the plate is assumed
homogenous and isotropic. This variation is achieved by changing
the volume fraction of the constituent elements. The volume
fraction and hence material properties may vary according to
exponential law (Zenkour [2]) or power law (Reddy [16]). For the
exponential law the material properties vary exponentially from
bottom to top and properties at any section z are represented in
terms of properties at the bottom surface as given by Eq. (1).

Pe ¼ P0eNðzþ1=2Þ ð1Þ
where, Pe represents effective material properties at any section
across thickness, P0 represents the property at bottom surface; for
our study, P0 = Pm where Pm represents property of metal. N is the
exponent on which the total variation of properties depends known
as power index. As N increases the properties change drastically
from bottom to top and this variation across the thickness for

Fig. 1. Geometry of functionally graded plate.

Fig. 2. Volume fraction variation by exponential law.
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