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a b s t r a c t

This paper presents a geometrically non-linear beam formulation for large displacement analysis of
composite beam type structures with semi-rigid connections. Within the framework of updated
Lagrangian incremental formulation and the nonlinear displacement field of thin-walled cross-
sections, which accounts for restrained warping and the second-order displacement terms due to large
rotations, the equilibrium equations of a straight beam element are firstly developed. Due to the
nonlinear displacement field, the geometric potential of semitangential moment is obtained for both
the internal torsion and bending moments, respectively. To account for the semi-rigid connection
behaviour, a special transformation procedure is developed. The laminates are modelled on the basis
of classical lamination theory. In order to illustrate the application of the proposed formulation, several
numerical examples are presented.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The interest for using fibre reinforced composites in construc-
tion applications in recent years increased rapidly. Composite
structural beam members have been introduced to replace some
of the conventional materials, primary in aerospace industry and
in past few decades also in civil engineering applications [1,2].
Commercially, the beammembers are produced in a number of dif-
ferent ‘‘steel-like” profiles including H-, I-, L- and tubular profiles,
imitating traditional structural members. Such structures generally
could display very complex structural behaviour. Due to their slen-
derness and specific mechanical properties, they are commonly
very susceptive to instability or buckling failure.

Many papers have been devoted to finite element buckling
analysis of different types of composite beams and only some of
them are cited here [3–10]. In these papers, different theories
(classical beam theory and higher-order beam theory) have been
introduced. However, there are quite a few papers dedicated to
problems of flexibility of the framing connections such as beam-
column, beam-girder and column-base connections. As is the case
of steel frames, joint flexibility may have a very significant
influence on the global behaviour of beam structure, and therefore,
the joint flexibility of composite frames remains to be devoted to
lot of attention [11].

The author’s previous papers [12,13] are devoted to flexibly
connected isotropic beam-type structures as well as to simulation
of laminated composite frames with no attention to connection
flexibilities. In this paper, which is a synthesis of the previous
two, the large displacement analysis of composite frames with
semi-rigid connections is presented.

The model is based on assumptions of large displacements but
small strains, the Euler–Bernoully beam theory for bending and the
Vlasov theory for torsion. The thin-walled beam members are
supposed to be straight and prismatic and the classical lamination
theory is adopted. External loads are assumed to be static and
conservative. In order to perform non-linear stability analysis in
load deflection manner, the updated Lagrangian (UL) incremental
descriptions is applied. The non-linear cross section displacement
field which accounts for the second order displacement terms
due to large rotations is implemented. The generalised
displacement control method [14] is employed in terms of the
incremental–iterative solution scheme, and updating of nodal
orientations at the end of the each iteration is performed using the
transformation rule which applies for semitangental incremental
rotations [15]. The force recovering is performed according to the
conventional approach (CA) [12,16].

A hybrid element, hereafter called the SR element, composed of
the aforementioned nonlinear beam element and dimensionless
linear/nonlinear springs added at element nodes is introduced for
modelling the structures at which flexible connections may occur.
One side of each spring is connected to a node of the beam
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element, while the other side is connected to a global node. Using
the SR beam element, connections are no longer assumed to be
fully rigid [17–19].

2. Basic consideration

2.1. Beam kinematics

In this paper, two sets of coordinate systems, which are mutu-
ally interrelated, are used. The first coordinate system is Cartesian
coordinate system (z,x,y), for which z-axis coincides with the beam
axis passing through the centroid O of each cross-section, while the
x- and y-axes are the principal inertial axes of the beam. The sec-
ond coordinate system is contour coordinate (z,n,s) as shown in
Fig. 1, wherein coordinate z coincident with beam z-axis, the coor-
dinate s is measured along the tangent of the middle surface in a
counter-clockwise direction, while n is the coordinate perpendicu-
lar to s.

Incremental displacement measures of a cross-section are
defined as

wO ¼ wOðzÞ; uS ¼ uSðzÞ; vS ¼ vSðzÞ; uz ¼ uzðzÞ

ux ¼ �dvS

dz
¼ uxðzÞ; uy ¼

duS

dz
¼ uzðzÞ; h ¼ �duz

dz
¼ hðzÞ

ð1Þ

where wO, uS and vS are the rigid-body translations of the cross-
section associated with the centroid in the z-direction and the shear
centre in the x- and y-directions; uz, ux and uy are the rigid-body
rotations about the shear centre z-, x- and y-axis, respectively; h
is a parameter defining the warping of the cross-section. The
superscript ‘prime’ indicates the derivative with respect to z.

Let rO denotes the position vector of a material point in the ref-
erence configuration and UO the translation displacement vector of
the centroid. If the assumption of small rotations is valid, then the
incremental displacement field ULDF, containing the first-order dis-
placement increments of an arbitrary point on the cross-section
defined by the position coordinates x and y and the warping
function x(x,y), can be written in the following form [20]:

ULDF ¼ UO þ ~urO � ~xs ð2Þ
where
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ux

uy

8>><
>>:

9>>=
>>;; UO ¼

wO þxh

uS

vS

8>><
>>:

9>>=
>>;; rO ¼

0

x

y

8>><
>>:

9>>=
>>;; s ¼

0

xS

yS

8>><
>>:

9>>=
>>;

~u ¼
0 �uy ux

uy 0 �uz

�ux uz 0

2
664

3
775; ~x ¼

0 0 0

0 0 �uz

0 uz 0

2
664

3
775

ð3Þ

If the assumption of small rotations is invalid, i.e. if the large
rotation effects are taken into account, then the non-linear
incremental displacement field UNDF should be introduced in the
analysis, i.e. [21]

UNDF ¼ ULDF þ ~U; ~U ¼ f ~uz ~ux ~uy gT ¼ 0:5ð ~u2r0 þ ~u ~xsÞ ð4Þ

in which ~U contains the additional or second-order displacement
increments due to large rotations.

According to the non-linear displacement field given by Eq. (3),
the Green–Lagrange incremental strain tensor can be written as:

eij ¼0:5 ðuiþ ~uiÞ;jþðujþ ~ujÞ;iþðukþ ~ukÞ;iðukþ ~ukÞ;j
h i

ffi eijþgijþ~eij

ð5Þ
where:

eij ¼ 0:5ðui;j þ uj;iÞ; gij ¼ 0:5uk;iuk;j; ~eij ¼ 0:5ð~ui;j þ ~uj;iÞ ð6Þ
It should be noted here that according to the geometrical

hypothesis of the in-plane rigidity for the cross-section, the strain
components exx, eyy and cxy ¼ 2exy in Eq. (6) should be equal to zero.

2.2. Contour displacements

The contour mid-line displacements are: �w, �u and �v , while the
out of mid-line displacement components are defined as:

wðz; s;nÞ ¼ �w� n
@�u
@z

; vðz; s;nÞ ¼ �v � n
@�u
@s

; uðz; s;nÞ ¼ �u ð7Þ

The beam-to-contour displacement relation can be written as:

�wL ¼ uzðz; s;nÞ; �wNL ¼ ~uzðz; s;nÞ;
�vL ¼ uxðz; s;nÞ cos bþ uyðz; s;nÞ sinb;

�vNL ¼ ~uxðz; s;nÞ cosbþ ~uyðz; s;nÞ sin b;

�uL ¼ uxðz; s;nÞ sinb� uyðz; s;nÞ cos b;
�uNL ¼ ~uxðz; s;nÞ sinb� ~uyðz; s;nÞ cosb

ð8Þ

where the right superscripts ‘‘L” and ‘‘NL” indicate the linear and
nonlinear parts, respectively.

Out of mid-line displacements can also be separate into the
linear and non-linear components, i.e.

wLðz; s;nÞ ¼ �wL � n
@�uL

@z
; vLðz; s;nÞ ¼ �vL � n

@�uL

@s
; uLðz; s;nÞ ¼ �uL

ð9Þ

wNLðz;s;nÞ¼ �wNL�n
@�uNL

@z
; vNLðz;s;nÞ¼ �vNL�n

@�uNL

@s
; uNLðz;s;nÞ¼�uNL

ð10Þ
and according to the geometrical hypothesis of the in-plane rigidity
for the cross-section, the only non-zero strain increments are:

ezz ¼ @wL

@z
ezs ¼ @wL

@s
þ @vL

@z
; ð11Þ
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1
2
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~ezz ¼ @wNL

@z
; ~ezs ¼ @wNL

@s
þ @vNL

@z
ð13Þ

where, respectively, eij and gij are the linear and non-linear strains
due to the first-order displacement increments given by Eq. (2),
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Fig. 1. Contour coordinate system.
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