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a b s t r a c t

We present a tensegrity approach to the strengthening of masonry vaults and domes performed by bond-
ing grids of fiber reinforced composites to the masonry substrate. A topology optimization of such a rein-
forcement technique is formulated, on accounting for a tensegrity model of the reinforced structure; a
minimal mass design strategy; different yield strengths of the masonry struts and tensile composite rein-
forcements; and multiple loading conditions. We show that the given optimization strategy can be prof-
itably employed to rationally design fiber-reinforced composite material reinforcements of existing or
new masonry vaults and domes, making use of the safe theorem of limit analysis. A wide collection of
numerical examples dealing with real-life masonry domes and vaults highlight the technical potential
of the proposed approach.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The field of Discrete Element Modeling (DEM) of materials and
structures is growing rapidly, attracting increasing attention from
physicists and mechanicians working in different research areas.
Originally, such a computational technique was aimed at describ-
ing particle interactions in discrete systems, via suitable force
and/or torque systems (fully discrete systems, refer, e.g., to [1]
and references therein). Nowadays, DEMs are also frequently used
in association with continuous approximation schemes (coupled
discrete-continuum models), in order to tackle scaling limitations
of purely discrete models. DEMs may indeed require a large num-
ber of variables, being well suited to describe small process zones
(dislocation and fracture nucleation, nanoindentation, atomic rear-
rangements, etc., cf. [2–7]).

In structural mechanics, a special class of DEMs is that of equiv-
alent truss models of solids and structures, which includes Lumped
Strain/Stress Models (LSM) of plates and shells [8–10]; Thrust Net-
work Approaches (TNA) to masonry structures [11–16]; mechani-
cal models of chains of granular materials or carbon nanotube
(CNT) arrays [17,18]; and strut and tie models of discontinuous

regions in reinforced-concrete structures [19], just to name a few
examples. Some convergence studies of such methods in the con-
tinuum limit are presented in [20–22] for bending plates, 2D elas-
ticity, and CNT arrays, respectively.

Tensegrity structures are prestressable truss structures, which
are obtained by stabilizing a set of compressed members (bars or
struts) through a network of tensile elements (cables or strings).
Tensegrity architectures have been used to describe a large variety
of natural [23] and engineering systems [24–26], and it has been
shown that the tensegrity approach to structural mechanics leads
to design minimal mass systems in different mechanical problems
[27–32].

The present work deals with the topology optimization of rein-
forcements of masonry vaults and domes realized through meshes
of Fiber Reinforced Polymers (FRP) and/or Fabric Reinforced
Cementitious Matrix (FRCM) composites bonded to the masonry
substrate. We model the examined structures as tensegrity net-
works of masonry struts and tensile elements corresponding to
the FRP-/FRCM-reinforcements. Such reinforcements are often
applied to masonry structures in the form of meshes of 1D ele-
ments [33,34], and are aimed at carrying tensile forces that would
otherwise cause cracking damage of masonry [35–39]. The pro-
posed optimization strategy determines the minimal mass tenseg-
rity structure connecting a given node set, under prescribed
yielding constraints. Each node is potentially connected to all the
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neighbor nodes lying in a ball of given radius, through compressive
and tensile elements. Such a connection pattern defines a back-
ground structure that is subject to minimal mass optimization
[30], assuming different yield strengths for the masonry struts
(compressive elements), and the FRP/FRCM reinforcements. An
optimization procedure takes the node set defining the geometry
of the structure (obtained, e.g., through a laser-scanner), the mate-
rial density and the compressive and tensile material strengths as
input parameters. It produces a minimal mass resisting mechanism
of the reinforced structure as output, which can be regarded as a
lumped stress/thrust network/strut and tie model of the examined
structure [12,14,15]. Under the assumption of perfectly plastic
response of masonry in compression and FRP/FRCM reinforce-
ments in tension, the safe theorem of the limit analysis of
elastic–plastic bodies [40] ensures that the reinforced structure is
safe under the examined loading conditions. It is worth noting that
the Italian Guide for the Design and Construction of Externally Bonded
FRP Systems for Strengthening Existing Structures claims what
follows: ‘Simplified schemes can also be used to describe the
behavior of the structure. For example, provided that tensile
stresses are directly taken by the FRP system, the stress level
may be determined by adopting a simplified distribution of stres-
ses that satisfies the equilibrium conditions but not necessarily
the strain compatibility’ (see [39], Section 5.2.1). A minimal mass
resisting mechanism allows for an optimized design of the
FRP-/FRCM-reinforcements, preventing excessive over-strength of
the reinforced structure, which may be responsible for reduced
‘cracking-adaptation’ capacity [41].

It worth noting that the strengthening of pre-existing masonry
structures may require the application of a suitable state of pre-
stress to be effective [39].

The paper is structured as follow. Section 2 describes the pro-
posed tensegrity model of a reinforced masonry vault or dome,
which is based on an automatically generated background struc-
ture. Next, Section 3 formulates a minimum mass optimization of
such a structure, under given yielding constraints and multiple
loading conditions. The following Section 4 presents a parade of
case studies dealing with FRP-/FRCM- reinforcements of a dome
(Section 4.1), a groin vault (or cross vault), a cloister vault (or dom-
ical vault) and a barrel vault (Section 4.2). Concluding remarks and
prospective work are illustrated in Section 5.

2. Tensegrity model of a reinforced masonry vault

Let us consider a masonry vault or dome with mean surface
described by a set of nn nodes in the 3D Euclidean space. In a given
Cartesian frame fO; x; y; zg, the components ðxk; yk; zkÞ of the posi-
tion vectors nk of all such nodes (k ¼ 1; . . . ;nn) can be arranged into
the following 3� nn node matrix

N ¼
x1 . . . xnn
y1 . . . ynn
z1 . . . znn

2
64

3
75 ð1Þ

We now introduce a background structure, which is obtained by
connecting each node nk with all the neighbors nj such that it
results jnk � njj 6 rk (interacting neighbors). Here, jnk � njj is the
Euclidean distance between nk and nj, and rk is a given connection
radius. Fig. 1 shows the particular case in which the interacting
neighbors of a selected node coincide with its nearest neighbors.
We connect nk to each interacting neighbor nj through two ele-
ments working in parallel: a compressive masonry strut (or bar)
bi ¼ nk � nj, and a tensile FRP/FRCM element (or string)
si ¼ nk � nj. The minimal mass optimization of the background
structure presented in Section 3 will choose which one such mem-
bers (bar or string) is eventually present between nodes nk and nj

in the optimized configuration (i.e., which one of the above mem-
bers eventually carries a nonzero axial force in the minimal mass
configuration, see also [30], Section 7). For future use, we let nb

and ns denote the total number of bars and the total number of
strings composing the background structure, respectively (with
nb ¼ ns in the non-optimal configuration), and we set nx ¼ nb þ ns.

We assume that the background structure is subject to a num-
ber m of different loading conditions, and, with reference to the j-

th condition, we let kðjÞbi denote the compressive force per unit

length (force density) acting in the i-th bar, and let cðjÞsi denote
the tensile force per unit length acting in the i-th string, both
defined to be positive quantities. The static equilibrium equations
of the nodes in correspondence of the current load condition can be
written as follows

AxðjÞ ¼ wðjÞ ð2Þ
where A is the 3nn � nx static matrix of the structure, depending on
the geometry and the connectivity of bars and strings (see [30]);wðjÞ

is external load vector, which stacks the 3nn Cartesian components of
the external forces acting on all nodes in the current loading condi-
tion; and xðjÞ is the vector with nx entries that collects the force den-
sities in bars and strings in correspondence of the same loading
condition, that is

xðjÞ ¼ ½kðjÞ1 � � � kðjÞnb jc
ðjÞ
1 � � � cðjÞns �

T ð3Þ
Let rbi and rsi respectively denote the compressive strength of

the generic bar and the tensile strength of the generic string form-
ing the background structure, which we hereafter assume behav-
ing as perfectly plastic members. Yielding constraints in bars and
strings require that, for each loading condition, it results

kðjÞi bi 6 rbiAbi ; cðjÞi si 6 rsiAsi ð5Þ
where Abi and Asi respectively denote the cross-section areas of the
generic bar and string.

The masses of the generic bar and string of the background
structure are computed as follows

mbi ¼ qbi
Abibi; msi ¼ qsi

Asi si; ð6Þ
where qbi

and qsi
denote the mass densities of such members,

respectively.

3. Minimal mass design

Following [30], we formulate a minimal mass design of the back-
ground structure through the following linear program

minimize
xðjÞ ;y

m ¼ dTy

subject to
AxðjÞ ¼ wðjÞ

CxðjÞ 6 Dy
xðjÞ P 0; y P 0

8><
>: ;

ð7Þ

where

y ¼ ½Ab1 � � �Abnb
jAs1 � � �Asns �T ð8Þ

dT ¼ ½.bi
bi � � �.bnb

bnb j.si
si � � �.sns

sns � ð9Þ

C ¼ diagðb1; � � � ; bnb Þ 0
0 diagðs1; � � � ; sns Þ

� �
ð10Þ

D ¼ diagðrb1 ; � � � ;rbnb
Þ 0

0 diagðrs1 ; � � � ;rsns Þ

" #
ð11Þ
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