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a b s t r a c t

In this work, the effect of defects/flaws (holes, inclusions, cracks) on the fatigue life of functionally graded
material (FGM) is analyzed by homogenized extended isogeometric analysis (XIGA). In FGM, the
gradation in the material properties is taken along the length of the plate. In XIGA, the crack faces are
modeled by discontinuous Heaviside jump function, whereas the singularity in stress field at the crack
tip is modeled by crack tip enrichment functions. Holes and inclusions are modeled by Heaviside jump
function and distance function, respectively. The values of stress intensity factor (SIF) are numerically
evaluated using the domain form of interaction integral approach. Paris law of fatigue crack growth is
employed for computing the fatigue life. The flaws are modeled in a 30% region near the main crack,
while the rest of the region is modeled with an equivalent homogeneous material. Several problems
involving discontinuities in 30% region of the domain are solved by XIGA, and the results are compared
with those obtained by modeling discontinuities in the entire domain of the plate.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials are made of two or more constituents,
which are distinct, separate at the microscopic or macroscopic
level, and have significantly different physical and chemical
properties. In general, any material consisting of two or more con-
stituents with different properties and distinct boundaries among
the components are referred as composite materials. Functionally
graded material (FGM) is also a type of the composite materials
in which the composition and micro-structure of its constituents
vary as per need. FGMs are characterized by local variation in their
composition/microstructure or both to obtain a useful variation in
the local material properties. The different micro-structural phases
in FGMs exhibit different properties so that the overall FGMs
achieve a multi-structural status from the properties gradation
point of view. The microstructure of FGMs is generally heteroge-
neous and mainly failure occurs due to crack nucleation. The
presence of flaws such as holes and inclusions in these material
complicates the modeling. Therefore, from the computational cost
point of view, often microscopic models are used to evaluate the
overall characteristics of the heterogeneous material [1].

The microscopic analysis of the structures/components
containing static and growing cracks becomes quite important
under fatigue loading. Several effective numerical models such
as homogenization [63,18,1] and multi-scale [64,43,41] are
employed. Budarapu et al. [17] proposed a multi-scale method
(atomistic continuum numerical method) for the analysis of
quasi-static crack growth. Talebi et al. [62] proposed a method to
couple a three-dimensional continuum domain with molecular
dynamic domain to simulate propagating cracks.

Till date, several homogenization approaches have been pro-
posed such as Mori–Tanaka [47], self-consistent [22] and differen-
tial scheme [44], asymptotic method [56], multipole expansion
[40] approach based on fast Fourier transform [48,45,16] and strain
energy based homogenization approach [1]. Among these, the
strain energy based homogenization approach is found quite effec-
tive from the computational cost point of view. In this approach,
the heterogeneous material of the structure is replaced by an
equivalent homogeneous material. According to this approach,
the strain energy density of the actual heterogeneous RVE must
be equal to the strain energy density of the equivalent homoge-
neous RVE under same loading and boundary conditions. To eval-
uate the equivalent homogeneous material properties of FGM, a
two-step procedure is adopted. Firstly, FGM is treated as an
equivalent composite and the properties are evaluated using rule
of mixtures. Further, the equivalent material properties of
equivalent composite are evaluated in the presence of flaws using
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homogenization approach. The main hypothesis in this methodol-
ogy is that all statistical averaged properties of the state variables
are same at any point in the material.

In past, some efforts have been made to study and investigate
the behavior of FGMs. Prabhakar and Tippur [51] conducted
various experiments for the computation of stress fields at the
crack tip. Kim and Paulino [36] employed finite element method
for the computation of mixed mode SIF in FGM. Dolbow and Gosz
[27] and Rao and Rahman [54] employed interaction energy
contour integrals for the evaluation of mixed mode SIF in 2-D
orthotropic FGM. Bahr et al. [3] analyzed the crack growth in
FGM using weight function method. Zhang et al. [67] used bound-
ary integral equation method for the mixed mode crack growth
analysis of uni-directional and bi-directional FGMs. Huang et al.
[33] used the multi-layered model for FGM. Zhang et al. [68]
performed the elasto-static analysis of anti-plane cracks in unidi-
rectional and bi-directional FGMs using hyper-singular boundary
integral equation method. Carpinteri et al. [20] performed brittle
crack propagation and fatigue crack growth in FGM using finite ele-
ment method. Carpinteri and Pugno [19] computed the strength of
FGM structures by introducing the re-entrant corners. Chakraborty
and Rahman [21] presented three multi-scale models for the frac-
ture analysis of a crack in two phase functionally graded compos-
ites. Guo and Noda [30] analytically investigated functionally
graded layered structure with a crack crossing the interface. Comi
and Mariani [23] addressed fracture processes in quasi brittle FGM
with ad-hoc extended finite element method. Dag et al. [25] inves-
tigated the mixed mode periodic crack problems in orthotropic
FGM using enriched FEM. Bhattacharya et al. [13] evaluated the
fatigue life of FGM using extended finite element method under
mode-I loading.

To accurately simulate the behavior of cracked structures, a
number of numerical methods such as element free Galerkin
method [5,50], boundary element method [66,65], reproducing
kernel particle method [42], meshless local Petrov Galerkin
method [2], coupled FE-EFGM [37,59], cracking particle method
[52,53] and extended finite element method [4,37]. In all these
methods, the approximation of geometry introduces some error
in the solution as different basis functions are employed for defin-
ing the geometry and solution. To cope-up with this, Hughes et al.
[34] introduced a powerful numerical tool, known as isogeometric
analysis (IGA). In IGA, the error associated with the domain dis-
cretization is totally removed as the same basis functions are
employed for defining the geometry as well as the solution.
Recently, the IGA was extended to tackle the problems involving
defects using PU enrichment, and was named as extended isogeo-
metric analysis (XIGA). Benson et al. [6] analyzed the fracture
mechanics problems using XIGA. Haasemann et al. [31] employed
XIGA to inspect a bi-material body with curved interfaces. De Luy-
cker et al. [26] established that XIGA provides greater accuracy and
higher convergence rate to solve the linear elastic fracture
mechanics problems. Ghorashi et al. [29] used XIGA to perform
the fracture analysis of structures. Jia et al. [35] extended the IGA
to solve material interface problems. Ghorashi et al. [28] used
T-spline based XIGA for the fracture analysis of orthotropic media.
Nguyen-Thanh et al. [49] used XIGA for the analysis of through-
thickness cracks in thin shell structures. Bhardwaj and Singh [8]
carried out the fatigue crack growth analysis in homogenous mate-
rial in the presence of flaws using XIGA. They [9,10] solved few
crack problems in the homogeneous and functionally graded
cracked plate using XIGA under different loading and boundary
conditions.

In the present work, XIGA has been extended for the simulation
of crack/crack growth in FGMs. A parametric study is conducted by
Bhardwaj et al. [11] to decide a region of discontinuities or micro-
defects which have major influence on the fatigue life. They found

that the micro-defects present in 30% region of the domain near
the major crack, largely influence the fatigue life of the plate. Thus,
in this work, the defects are modeled only in 30% region of the
domain while the remaining domain is modeled with the proper-
ties of equivalent homogenous material. The main objectives of
present study are as follows:

� To simulate cracks in functionally graded materials using XIGA.
� To perform the fatigue crack growth analysis of an edge cracked
FGM plate in the presence of flaws.

� To reduce the computational time by the use of homogenization
for the analysis of cracked FGM plate.

This paper is organized as follows: the frame work of
isogeometric analysis (basis function, knot vector and isogeometric
discretization) is discussed in Section 2. Section 3 describes the
formulation of extended isogeometric analysis, including the
approximations for cracks, holes, inclusions, interfaces. Section 4
depicts a methodology for SIFs computation, criterion for fatigue
crack growth in FGMs and the physics of FGM along with its rele-
vant properties. The homogenization process and evaluation of
equivalent material properties are described in Section 5. Several
numerical problems are illustrated in Section 6 for evaluating the
fatigue life of the edge cracked FGM. The conclusions are presented
in Section 7.

2. Isogeometric analysis

Non-uniform rational B-splines (NURBS) are commonly used in
computer aided design due to their ability to represent complex
geometries exactly. Isogeometric analysis (IGA) uses identical basis
functions for defining the geometry and solution. In IGA, the error
due to geometric discretization is totally removed as same basis
functions (NURBS) are used for defining the geometry and the solu-
tion. The details of the basis function, knot vector and isogeometric
discretization are given below.

2.1. Basis function

In this section, B-splines, NURBS and the derivatives of NURBS
basis functions are briefly presented. B-splines are made from
the piecewise polynomial functions. For a detailed description
one can refer to Cottrell et al. [24]. Consider a one-dimensional
parametric space n 2 ½0;1�; a knot vector N to construct the
B-spline basis functions, is a set of non-decreasing real numbers,
i.e. N ¼ fn1 ¼ 0; n2; . . . nnþpþ1 ¼ 1g with ni 2 R and ni 6 niþ1, where
ni, n and p represent a knot, the number of basis functions and
the order of basis functions, respectively. The non-zero interval
½ni; niþ1� (termed as knot span), is known as element in IGA. An
open knot vector (two ends of knots are repeated p + 1 times) is
given as,

N ¼ fn1 ¼ . . . npþ1 ¼ 0; npþ2; . . . ; nn; nnþ1 ¼ . . . nnþpþ1 ¼ 1g ð1Þ

The B-spline basis functions of degree p, Ni;pðnÞ are defined
using the Cox–de Boor recursion formula,

Ni;0ðnÞ ¼
1 ni 6 n 6 niþ1

0 otherwise

�
for p ¼ 0 ð2Þ

Ni;pðnÞ ¼ n� ni
niþp � ni

Ni;p�1ðnÞ þ
niþpþ1 � n

niþpþ1 � niþ1
Niþ1;p�1ðnÞ for p P 1

ð3Þ
The first derivatives of B-spline basis functions required for the

computation of element stiffness matrix can be determined for a
polynomial degree p and knot vector N as,
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