

Contents lists available at SciVerse ScienceDirect

Antiviral Research

journal homepage: www.elsevier.com/locate/antiviral

Review

Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy

Simon-Djamel Thiberville ^{a,b,*}, Nanikaly Moyen ^{a,b}, Laurence Dupuis-Maguiraga ^{c,d}, Antoine Nougairede ^{a,b}, Ernest A. Gould ^{a,b}, Pierre Roques ^{c,d}, Xavier de Lamballerie ^{a,b}

ARTICLE INFO

Article history: Received 7 April 2013 Revised 21 May 2013 Accepted 18 June 2013 Available online 28 June 2013

Keywords: Chikungunya virus Chikungunya fever Arbovirus Alphavirus Antiviral therapy

ABSTRACT

Chikungunya virus (CHIKV) is the aetiological agent of the mosquito-borne disease chikungunya fever, a debilitating arthritic disease that, during the past 7 years, has caused immeasurable morbidity and some mortality in humans, including newborn babies, following its emergence and dispersal out of Africa to the Indian Ocean islands and Asia. Since the first reports of its existence in Africa in the 1950s, more than 1500 scientific publications on the different aspects of the disease and its causative agent have been produced. Analysis of these publications shows that, following a number of studies in the 1960s and 1970s, and in the absence of autochthonous cases in developed countries, the interest of the scientific community remained low. However, in 2005 chikungunya fever unexpectedly re-emerged in the form of devastating epidemics in and around the Indian Ocean. These outbreaks were associated with mutations in the viral genome that facilitated the replication of the virus in *Aedes albopictus* mosquitoes. Since then, nearly 1000 publications on chikungunya fever have been referenced in the PubMed database. This article provides a comprehensive review of chikungunya fever and CHIKV, including clinical data, epidemiological reports, therapeutic aspects and data relating to animal models for *in vivo* laboratory studies. It includes Supplementary Tables of all WHO outbreak bulletins, ProMED Mail alerts, viral sequences available on GenBank, and PubMed reports of clinical cases and seroprevalence studies.

© 2013 Elsevier B.V. All rights reserved.

Contents

1.	Intro	duction	346
2.	Chiku	ungunya virus in brief	347
	2.1.	Classification	347
	2.2.	Virus structure and genomic organisation	347
		Replication cycle	
3.	Clinic	cal syndrome	348
	3.1.	Incubation period	348
	3.2.	Mild cases and asymptomatic infections	348
	3.3.	Clinical features of chikungunya fever	
		3.3.1. Acute illness	349
		3.3.2. Viraemia and changes in clinical laboratory tests	349
		3.3.3. Differential diagnosis	349
		3.3.4. Late stage of illness and persistent arthropathy	349
		3.3.5. Risk factors for persistent arthropathy	
	3.4.	Atypical cases	350
	3.5.	Chikungunya feyer in children	350

E-mail address: djamt@yahoo.fr (S.-D. Thiberville).

^a UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France

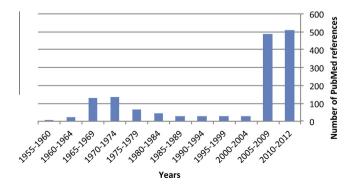
^b University Hospital Institute for Infectious Disease and Tropical Medicine, Marseille, France

^c CEA, Division of Immuno-Virologie, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses, France

^d UMR E1, University Paris Sud 11, Orsay, France

^{*} Corresponding author. Current address: UMR_D 190, Faculté de Médecine Timone, 5ème étage Aile Bleue, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France. Tel.: +33 91 32 44 20; fax: +33 91 32 44 21.

	3.6.	Chikungunya fever in pregnant women	351
	3.7.	Risk factors for severe disease	351
	3.8.	Supportive therapy	351
4.	Epide	emiology	351
	4.1.	Arthropod vectors	351
	4.2.	Vertebrate reservoirs and transmission cycle	351
	4.3.	Infection in humans	352
		4.3.1. Early description of chikungunya	352
		4.3.2. CHIKV epidemics in Africa and Asia	353
		4.3.3. Epidemics in the Indian Ocean, India and Southeast Asia	354
		4.3.4. Chikungunya fever in Europe and the Americas.	356
		4.3.5. Nosocomial transmission of CHIKV	356
5.	Phylo	ogenetic analysis	356
6.	Patho	ogenesis of chikungunya fever	358
	6.1.	Target cells	358
	6.2.	Animal models	358
		6.2.1. Mice	358
		6.2.2. Nonhuman primates	358
7.	Vacci	ines	360
	7.1.	Single recombinant antigens or Vero cell-adapted, formalin-inactivated vaccine	360
	7.2.	Structural components of CHIKV in non-infectious virus-like particles (VLPs)	360
	7.3.	Vaccination with chimeric alphaviruses	360
	7.4.	Electroporated DNA	361
	7.5.	Attenuation of CHIKV by large-scale codon re-encoding	361
8.	Antiv	riral therapy	362
	8.1.	Experimental therapies targeting steps in viral replication	362
		8.1.1. Antibody-based therapies	362
		8.1.2. Interferon	362
		8.1.3. Small-molecule drugs	362
		8.1.4. Antisense oligonucleotides and siRNA.	363
	8.2.	Experimental therapies targeting host responses to infection	364
		8.2.1. Sphingosine kinase 1 activity.	364
		8.2.2. Inhibitor of monocyte chemotactic protein (MCP)	364
	Ackn	nowledgments	
	Appe	endix A. Supplementary data	364
	Refer	rences	364


1. Introduction

Chikungunya virus (CHIKV) is an arthropod-borne virus that is transmitted by Aedes (Ae.) mosquitoes. It was first isolated in 1952 in the Makonde Plateau of the southern province of Tanzania (former Tanganyika). The virus transmission cycle requires infection of female mosquitoes via a viraemic bloodmeal taken from a susceptible vertebrate host and, following a suitable extrinsic incubation period, transmission to another vertebrate host during subsequent feeding (Solignat et al., 2009). After an incubation period, most patients suffer from polyarthralgia and myalgia, with a significant impact on their quality of life. Chikungunya fever is characterised by a very high viraemic load and concomitant abnormalities such as pronounced lymphopenia and moderate thrombocytopenia. The rate of asymptomatic cases is lower, and the percentage of infected patients requiring medical attention is higher, than in most other common arboviral infections. After the acute stage, some patients experienced relapse, persistent arthralgia or musculoskeletal pains. Increase of age is the most obvious risk factor associated with severe disease or persistent symptoms in adults, whilst in paediatric populations, newborns have a higher risk of severe disease.

Since the first reports of chikungunya fever in Africa in the early 1950s, more than 1500 scientific publications on different aspects of the disease and its causative agent have been produced. Analysis of these publications shows that, following a number of studies in the 1960s and 1970s, and in the absence of autochthonous cases in developed countries, the interest of the scientific community remained low (Fig. 1). However, in 2005 chikungunya fever unexpectedly re-emerged in the form of devastating epidemics in and

around the Indian Ocean. These outbreaks were associated with mutations in the viral genome that facilitated the replication of the virus in *Aedes albopictus* mosquitoes. Since then, nearly 1000 publications on chikungunya fever have been referenced in the PubMed database. The reader is referred to Supplementary Tables 1–6 for lists of all WHO outbreak bulletins, ProMED Mail alerts, viral sequences available on GenBank, and PubMed reports of clinical cases and seroprevalence studies.

Two distinct transmission cycles have been described for CHIKV: a sylvatic cycle in Africa and an urban human-mosquito-human virus transmission cycle seen in Asia, the Indian Ocean, Africa and more recently, in Europe. The two major vectors of the disease currently identified are *Ae. aegypti* and since 2006, *Ae. albopictus*. The important role of *Ae. albopictus* in recent outbreaks is

Fig. 1. Publications related to outbreaks of chikungunya fever in the PubMed database. Articles published between 1950 and September, 2012 were identified using the MeSH term "chikungunya," and are reported by 5-year periods.

Download English Version:

https://daneshyari.com/en/article/2510073

Download Persian Version:

https://daneshyari.com/article/2510073

<u>Daneshyari.com</u>