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a b s t r a c t

This paper presents a static analysis of functionally graded (FG) single and sandwich beams by using a
simple and efficient 4-unknown quasi-3D hybrid type theory, which includes both shear deformation
and thickness stretching effects. The governing equations and boundary conditions are derived by
employing the principle of virtual works. Navier-type closed-form solution is obtained for several beams.
New hybrid type shear strain shape functions for the inplane and transverse displacement were
introduced in general manner to model the displacement field of beams. Numerical results of the present
compact quasi-3D theory are compared with other quasi-3D higher order shear deformation theories
(HSDTs).

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are a type of heteroge-
neous composite material in which the properties change gradu-
ally over one or more directions. FGMs made possible to avoid
abrupt changes in the stress and displacement distributions.
Currently, FGMs are alternative materials widely used in
aerospace, nuclear reactor, energy sources, biomechanical, optical,
civil, automotive, electronic, chemical, mechanical, and shipbuilding
industries.

FGMs were proposed by Bever and Duwez [1], and after them
several researchers have provided results on functionally graded
plates [2–10], sandwich plates [11,12], shells [13,14] and beams
[15–17]; this short list gives an idea of some contribution in the
field. Carrera et al. [18] investigated the influence of the stretching
effect on the static responses of functionally graded (FG) plates
and shells, which is especially significant for thick FG plates.
Consequently, thickness stretching effects is also necessary to
include in beam formulations for the precise mechanical prediction
of stresses.

As far as the authors are aware, there is limited work available
for bending analysis of FG sandwich beams. Vo et al. [19] develop a
quasi-3D polynomial theory with 4 unknowns to investigate the
static behavior and the effect of normal strain in FG sandwich
beams for various power-law index, skin-core-skin thickness
ratios and boundary conditions. In this context, the influence of

non-polynomial or hybrid type shear strain shape functions were
not explored to study FG beams along with C1 HSDTs. However,
it is remarkable to mention the work by Filippi et al. [20] based
on Giunta et al. [15–17] beam formulation (1D Carrera’s unified
formulation), where trigonometric, polynomial, exponential and
miscellaneous expansions are used and evaluated for various
structural problems. This paper attempts to cover this gap.

In this paper, a 4-unknown hybrid type quasi-3D theory with
both shear deformation and thickness stretching effects for the
bending analysis of FG beams is presented. Many quasi-3D hybrid
type (polynomial, non-polynomial, and hybrid) HSDTs, including
the thickness expansion can be derived by using the present gen-
eralized theory. The theory complies with the tangential stress-
free boundary conditions on the beam boundary surface, and thus
a shear correction factor is not required. The beam governing equa-
tions and its boundary conditions are derived by employing the
principle of virtual works. Navier-type analytical solution is
obtained for sandwich beams subjected to transverse load for sim-
ply supported boundary conditions. The results are compared with
other quasi-3D HSDT and further referential results for the dis-
placement and stresses of FG sandwich beams are obtained.

2. Analytical modeling of FG beams

An FG beam of length a, width b and a total thickness h made of
a mixture of metal and ceramic materials are considered in the
present analysis. The elastic material properties vary through the
thickness and the power-law distribution [19]:

EðzÞ ¼ ðEc � EmÞVcðzÞ þ Em; ð1Þ
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where subscripts m and c represent the metallic and ceramic con-
stituents, Vc is the volume fraction of the ceramic phase of the
beam. For comparison reasons, three types of FG beams are consid-
ered, see Fig. 1.

2.1. Type A FG beams

The beam is composed of a FG material (Fig. 1a) with Vc given
by:

VcðzÞ ¼ 2zþ h
2h

� �p

: ð2Þ

2.2. Type B sandwich beams with homogeneous skins and FG core

The bottom and top skin of sandwich beams is metal and cera-
mic, while, the core is composed of a FG material (Fig. 1b) with Vc

given by [19]:

Vc ¼ 0 z 2 ½�h=2;h1� ðbottom skinÞ;
Vc ¼ z�h1

h2�h1

� �p
z 2 ½h1;h2� ðcoreÞ;

Vc ¼ 1 z 2 ½h2;h=2� ðtop skinÞ:
ð3Þ

2.3. Type C sandwich beams with FG skins and ceramic core

The bottom and top skin of sandwich beams is composed of a
FG material, while, the core is ceramic (Fig. 1c) with Vc given by
[19]:

Vc ¼ z�h0
h1�h0

� �p
z 2 ½�h=2;h1� ðbottom skinÞ;

Vc ¼ 1 z 2 ½h1;h2� ðcoreÞ;
Vc ¼ z�h3

h2�h3

� �p
z 2 ½h2;h=2� ðtop skinÞ:

ð4Þ

2.4. Theoretical displacement field

The displacement field satisfying the free surfaces boundary
conditions of transverse shear stresses (and hence strains) vanish-
ing at a point (x, �h=2) on the outer (top) and inner (bottom) sur-
faces of the beam, is given as follows:

uðx; zÞ ¼ uþ z y��
@wb

@x
þ q� @h

@x
� @ws

@x

� �
þ f ðzÞ @wb

@x
;

wðx; zÞ ¼ wb þws þ gðzÞh;
ð5Þ

where u, ws, wb and h are four unknown displacements of midplane
of the beam. The constants y��, y� and q� are obtained by considering
the criteria to reduce the number of unknowns in HSDTs as in
Reddy and Liu [21]. They are as a function of the shear strain shape
functions, f ðzÞ and gðzÞ, i.e. y�� ¼ y� � 1, y� ¼ �f 0 h

2

� 	
and q� ¼ �g h

2

� 	
.

For deriving the equations, small elastic deformations are
assumed, i.e. displacements and rotations are small, and obey
Hookes law. The starting point of the present generalized quasi-
3D HSDT is the 3D elasticity theory [22]. The strain–displacement
relations, based on this formulation, are written as follows:

exx ¼ e0xx þ ze1xx þ f ðzÞe2xx;
ezz ¼ g0ðzÞe5zz;
cxz ¼ c0xz þ gðzÞc3xx þ f 0ðzÞc4xz;

ð6Þ

where

e0xx ¼ @u
@x e1xx ¼ y�� @2wb

@x2 þ q� @2h
@x2 � @2ws

@x2 e2xx ¼ @2wb
@x2 ;

e5zz ¼ h;

e0xz ¼ y� @wb
@x þ q� @h

@x e3xz ¼ @h
@x e4xz ¼ @wb

@x ;

ð7Þ

The linear constitutive relations are given below:

rxx

rzz

sxz

8><
>:

9>=
>;

ðzÞ

¼
Q11 Q13 0
Q13 Q33 0
0 0 Q55

2
64

3
75

ðzÞ

exx
ezz
cxz

8><
>:

9>=
>;

ðzÞ

; ð8Þ

in which, rðzÞ ¼ rxx;rzz; sxzf gT and eðzÞ ¼ exx; ezz; cxz

 �T are the stres-

ses and the strain vectors with respect to the beam coordinate sys-
tem. The Qij expressions are given below:

Q11ðzÞ ¼ Q33ðzÞ ¼
EðzÞ

1� m2
;

Q13ðzÞ ¼
EðzÞm
1� m2

;

Q55ðzÞ ¼
EðzÞ

2ð1þ mÞ :

ð9Þ

The elastic coefficients Qij vary through the thickness according
to Eq. (1).

Considering the static version of the principle of virtual work,
the following expressions can be obtained:

0¼
Z h=2

�h=2

Z
X
rxxdexxþrzzdezzþsxzdcxz½ �dxdy

� 

dz

" #
�

Z
X
qdwdxdy

� �
;

ð10Þ

0 ¼
Z
X

N1de0xx þM1de1xx þ P1de2xx þ R3de5zz þ N5de0xz
�

þQ5de3xz þ K5de4xz � qdw
	
dxdy; ð11Þ

where r or e are the stresses and the strain vectors, q is the dis-
tributed transverse load; and Ni; Mi; Pi; Qi; Ki and Ri are the resul-
tants of the following integrations:

ðNi;Mi; PiÞ ¼
XN
k¼1

Z zk

zðk�1Þ
rið1; z; f ðzÞÞdz; ði ¼ 1Þ;

Ni ¼
XN
k¼1

Z zk

zðk�1Þ
ridz; ði ¼ 5Þ;

ðQi;KiÞ ¼
XN
k¼1

Z zk

zðk�1Þ
riðgðzÞ; f 0ðzÞÞdz; ði ¼ 5Þ;

Ri ¼
XN
k¼1

Z zk

zðk�1Þ
rig0ðzÞdz; ði ¼ 3Þ;

ð12Þ

(a) Type A (b) Type B

(a) Type C 

Fig. 1. Geometry and coordinate of a FG sandwich beam.
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