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a b s t r a c t

In the present study, vibration of rotating composite beams is studied. Different beam theories are used in
the formulation including Euler–Bernoulli, Timoshenko and Reddy beam theories. Ritz method is used in
the solution of the problem. Simple polynomials are chosen for the displacement field. The continuity of
transverse stresses is satisfied among the layers. Results are obtained for different orthotropy ratios, rota-
tion speed, hub ratio, length to thickness ratio of the rotating composite beam and different boundary
conditions.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Composite structures are preferred in many engineering
applications due to their high stiffness and low density. Different
static and dynamic conditions are encountered in their applica-
tions. Rotating structures are one important example of composite
beams and plates in industrial applications.

Some studies can be obtained related to vibration of rotating
structures. Southwell and Gough [1] examined characteristics of
the vibration rotating cantilever beams using the energy method.
The same problem has been considered by some researchers in
the previous studies [2–5]. In 1977 Giurgiutiu and Stafford [6]
developed the equations of motion, including shear and rotary of
inertia the vibration of the blades at constant angular velocity
[6]. Patel et al. [7] have used finite element method in order to
investigate the vibration of composite beam. Yoo et al. [8] used
Timoshenko beam theory in order to examine behavior of flapwise
vibration of rotating multilayer composite beam. Lee et al. [9]
investigated the rotating cantilever beam vibration. Ozdemir and
Kaya [10] investigated the vibration of rotating tapered cantilever
beam. They obtained the natural frequency of a tapered beam by
the differential transformation method. In another study, Kim
et al. [11] studied vibration of rotating beams. In the same study,
axial, chordwise and flapwise motion was derived by using
Hamilton principles. Vibration of rotating isotropic and composite
uniform and tapered beams was investigated by Ozgumus and
Kaya [12]. Vibration of composite beams have been considered in
some of the previous studies [13–19].

Although there are some studies related with rotating compos-
ite beams higher order shear deformation theories have rarely
been considered in the previous studies. The continuity of shear
stress also has not been considered in open literature.

The object of this study is to examine the vibration of rotating
composite beams using different beam theories including EB,
Timoshenko and Reddy theories. The continuity of the shear
stresses has been considered among the layers. Ritz method has
been used in the solution of the problem. Different material,
geometrical and rotational properties are considered.

2. Analysis

A composite beam with dimensions L (length), h (height) and b
(width) is taken account (Fig. 1). The beam is constructed of
linearly elastic transversely isotropic layers. The composite beam
is rotating about an axis with a given angular velocity X. A typical
rotating composite beam is shown in Fig. 1. The stress in each layer
can be given as [20–22]:

rðvÞ
x ¼ Q ðvÞ

11 ex; sðvÞxz ¼ Q ðvÞ
55 cxz; ð1Þ

where Q ðvÞ
ij are the reduced stiffnesses [23] and X is the number of

layers. By considering shear deformations the following displace-
ment field can be written:

Uðx; z; tÞ ¼ u0ðx; tÞ � zw;x þ sðzÞu1ðx; tÞ;
Vðx; z; tÞ ¼ 0;
Wðx; z; tÞ ¼ w0ðx; tÞ;

ð2Þ

where U, V and W are the displacement components of the beam
along the x, y and z directions respectively. u1 is a function denoting
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the shear deformation at mid-plane of the beam. Following kine-
matic relations can be written using Eq. (2):

ex ¼ u;x � zw;xx þ sðzÞu1;x;

cxz ¼ s0u1;
ð3Þ

where a prime and ‘‘x” denote the derivative with respect to z and
partial derivative with respect to x respectively.

Parabolic shear deformation beam theory (PSDBT) of Reddy
[24], the first order shear deformation beam theory (FSDBT) of
Mindlin [25] and Euler–Bernoulli beam theory will be used in this
study. In order to do this shape function s(z) should be chosen in
the following forms:

EBT : sðzÞ ¼ 0
FSDBT : sðzÞ ¼ z;

PSDBT : sðzÞ ¼ zð1� 4z2=3h2Þ:
ð4Þ

The force and moment resultants of the present theory can be
defined as:

ðNc
xÞ ¼

Z h=2

�h=2
ðrxÞdz; ðMc

xÞ ¼
Z h=2

�h=2
rxzdz;

ðMa
xÞ ¼

Z h=2

�h=2
ðrxÞsðzÞdz; ðQa

xÞ ¼
Z h=2

�h=2
ðsxzÞs0ðzÞdz

ð5Þ

where superscript ‘c’ is used for the classical beam theory; whereas
superscript ‘a’ is used for additional quantities incorporating the
transverse shear deformation effects. Using Eqs. (1)–(4) the follow-
ing constitutive equations are obtained [21,22]:

Nc
x

Mc
x

Ma
x

2
64

3
75 ¼

A11 B11 E11

D11 F11

Sym H11

2
64

3
75

u;x

�w;xx

u1;x

2
64

3
75½Qa

x � ¼ ½A55�½u1� ð6Þ

The extensional, coupling, bending and transverse shear rigidi-
ties are defined as follows:

Ai11 ¼
Z h=2

�h=2
Q ðvÞ

11 dz; A55 ¼ k
Z h=2

�h=2
Q ðvÞ

55 ðs0Þ2dz;

B11 ¼
Z h=2

�h=2
Q ðvÞ

ij zdz; E11 ¼
Z h=2

�h=2
Q ðvÞ

ij sðzÞdz;

D11 ¼
Z h=2

�h=2
Q ðvÞ

ij z2dz; F11 ¼
Z h=2

�h=2
Q ðvÞ

ij sðzÞzdz;

H11 ¼
Z h=2

�h=2
Q ðvÞ

ij ðsÞ2dz

ð Þ0 ¼ dð Þ=dz:

ð7Þ

k = 5/6 is assumed for the FSDBT.

Application of the Hamilton’s principle leads to following equa-
tions of motion:

Nc
x;x ¼ ðq0uþ q01u1 � q1w;xÞ;tt;

Mc
x;xx ¼ ðq0wþ q1u;x þ q11u1;x � q2w;xxÞ;tt � ðFðxÞw;xÞ;x þ Ne

xw;xx;

Ma
x;x � Qa

x ¼ ðq01uþ q02u1 � q11w;xÞ;tt;
ð8Þ

where ,tt denotes time derivatives and F(x) is the centrifugal force
due to rotation which is defined as:

FðxÞ ¼ 1
2

Z L

x
qX2ðr þ xÞdx ð9Þ

where r is the hub radius shown in Fig. 1 and the q’s are defined as

qi ¼
Z h=2

�h=2
qzidz; ði ¼ 0;1;2Þ;

qjm ¼
Z h=2

�h=2
qz jf mj dz; ðj ¼ 0;1;m ¼ 1;2Þ

ð10Þ

For the present unified shear deformation composite beam the-
ory, the boundary conditions of the rotating composite beam can
be written as:

at x ¼ 0; L

u ¼ �u or Nc
x ¼ �Nc

x;

w ¼ �w or Mc
x;x ¼ �Mc

x;x

w;x ¼ �w;x or Mc
x ¼ �Mc

x

u1 ¼ �u1 or Ma
x ¼ �Ma

x

ð11Þ

where �u, �w, �w;x, �u1, �Nc
x, �M

c
x;x, �M

c
x, �M

a
x are the prescribed values at the

edges of the composite beam.

2.1. The transverse continuity conditions for the symmetric cross-ply
beams

By suitable changing the previous shape functions s(z) given in
Eq. (2), the continuity of transverse shear strain can be satisfied.
Details of this manipulation have been given in the previous works
[21,22]. Only the final form of the new shape function that satisfies
the transverse continuity conditions is described here.

SðzÞ ¼ AvsðzÞ þ Bv ð12Þ
where

Av ¼ Q ðv�1Þ
55 s0ðv� 1ÞðzvÞ
Q ðvÞ

55 s0ðvÞðzvÞ
Av�1; A0 ¼ 1; ð13aÞ

Fig. 1. Geometry and dimensions of rotating composite cantilever beam.
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