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a b s t r a c t

In this note a free vibration analysis of periodic three-layered sandwich structures is performed. Basing
on the Kirchhoff’s thin plate theory simplified equations of motion are derived, which are characterised
by highly-oscillating, periodic and non-continuous coefficients. In order to obtain a system of equations
with constant coefficients, the tolerance averaging technique is used. An application of the proposed tol-
erance model to analyse free vibration frequencies of a three-layered plate strip is shown – for both lower
order frequencies related to its macrostructure and higher order frequencies related to its microstructure.
Some comparisons of results of lower frequencies, obtained in the tolerance, the asymptotic and the
known homogenised models are presented. Moreover, a certain verification of the proposed model is per-
formed using the Ritz method. It can be observed that the tolerance model can be successfully applied to
analyse vibration problems of vast variety of periodic three-layered plates and can significantly improve
the optimisation process of such structures.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There are many reasons why composite structures are becom-
ing more and more vital for modern engineering. As state of the
art technology allows us to combine several different materials
into one heterogeneous structure, characterised by physical and
mechanical properties, which are unreachable for classic materials,
it becomes crucial to develop useful tool for optimising these prop-
erties for special engineering purposes.

In this article three-layered ‘sandwich’ composite structures are
considered. Investigations on behaviour of such structures have
their beginnings in the middle of 20th century and since then the
design and optimisation process has been much improved. The
analysis of dynamical behaviour of sandwich structures can be
found in works of Chonan [1], Oniszczuk [2,3] and Szcześniak
[4,5], among others. As it became clear that the shape of the core
of sandwich structures is of great importance for mechanical prop-
erties of the whole structure, many researchers investigate this
relation. Hence, many different concepts of periodic (e.g. honey-
comb, rectangular, wavy-type, cf. Massimo and Panos [6]) or
quasi-periodic (e.g. aluminium or metal foam, cf. Jin-Yih et al.
[7], Magnucki and Jasion [8], Grygorowicz et al. [9], Jasion et al.

[10]) cores have been presented and the need for a convenient
mathematic model of periodic structures has emerged.

Some propositions to describe discrete periodic structures was
performed by Brillouin [11], where the vibration analysis of atomic
lattice was investigated. Basing on his work several discrete and
continuous models of a wave propagation in periodic structures
were proposed, e.g. by Mead [12]. A different approach was pro-
posed by Kohn and Vogelius [13], who presented the homogenisa-
tion method for periodic plates, which special application was used
recently e.g. by Wen-ming et al. [14]. However, governing equa-
tions of these methods usually neglect the influence of the
microstructure on behaviour of these plates, which in certain engi-
neering cases can prove to be insufficient.

With the development of computers, the finite element method
(FEM) become one of the most popular approaches to analyze peri-
odic structures. One should mention the work by Zhi-Jing et al.
[15], which shows a vibration analysis of periodic plates using a
spectral element method, being a special application of FEM, inves-
tigations of Massimo and Panos [6] of wave propagation in sand-
wich plates with periodic honeycomb core or numerical analysis
of vibrations of periodic plates by Yuanwu et al. [16], using the
asymptotic homogenisation method. Since the use of FEM for
vibration analysis of various periodic structures is much time-
consuming, different analytical solutions are proposed.

In this note the analytical solution to a vibration analysis of
periodic three-layered structures with an inert core is presented
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and discussed. Basing on the simplified model, shown by Szcześ-
niak [4], governing equations of motion with coefficients being
periodic, non-continuous and highly-oscillating functions are
obtained. In order to derive a system of equations with constant
coefficients, which take into consideration the effect of the
microstructure on the behaviour of the whole structure, the toler-
ance averaging technique, proposed by Woźniak et al. [17,18], is
applied. Eventually, the obtained solutions are compared to results
by the asymptotic and the homogenised models. A certain physical
correctness of the proposed model is also shown using the Ritz
method.

2. Modelling foundations

Let Ox1x2x3 be an orthogonal Cartesian coordinate system, t – a
time coordinate and x � ðx1; x2Þ. The considered structure is
assumed to have spans L1 and L2 in x1- and x2-axis directions,
respectively. Hence, its midplane is defined as D � ½0; L1� � ½0; L2�.
By setting z � x3 the undeformed plate occupies the region
K � fðx; zÞ : �HðxÞ=2 6 z 6 HðxÞ=2; x 2 Dg, where H(x) is a total
thickness of the plate.

The outer layers of the considered structure are Kirchhoff’s type
thin plates, which are assumed to be symmetric to the structure
midplane D and are made of the same materials. Hence, all mate-
rial and mechanical properties of these layers are identical. Let us
introduce the following denotations, describing outer layer’s bend-
ing stiffness B and mass density per unit area l:

Babcd � B1
abcdðxÞ ¼ B2

abcdðxÞ ¼
Z hðxÞ=2

�hðxÞ=2
Cabcdðx; zÞz2 dz;

l � l1ðxÞ ¼ l2ðxÞ ¼
Z hðxÞ=2

�hðxÞ=2
qðx; zÞdz; ð1Þ

where Cabcd(x, z) is elastic modulus tensor of the outer layers, m is
the Poisson’s ratio, h(x) is the thickness of the outer layer (cf.
Fig. 1) and qðx; zÞ is mass density. An additional condition is that
the outer plates are connected with each other by elastic core, char-
acterised by certain elasticity modulus k(x), thickness hc(x) and
mass density qc(x) (cf. Fig. 1).

Considering the described structure of the sandwich plate, it is
possible to distinguish a small, repeatable element, called the peri-
odicity cell. Every cell has dimensions l1 and l2 in x1 and x2 direction,
respectively. Hence it occupies the region X � ½�l1=2; l1=2��
½�l2=2; l2=2�. The diameter of the periodicity cell, given by:

l � l21 þ l22
� �1=2

, is called the microstructure parameter andmust fulfil

the following conditions: hðxÞ � l � minðL1; L2Þ.
Let us denote an overdot as a time derivative and @a as a partial

derivative with respect to a space coordinate. Taking into account
above conditions, the equations of motion for the considered plate
structure can be written as follows:

@abðBabcd@cdu1Þ þ l€u1 þ kðu1 � u2Þ ¼ f 1;

@abðBabcd@cdu2Þ þ l€u2 þ kðu2 � u1Þ ¼ f 2;
ð2Þ

where u1, u2 are deflections of upper and lower plate, respectively,
and f1, f2 are loadings defined as:

f 1 � p1 �
1
2
lc

€u1; f 2 � p2 �
1
2
lc

€u2; lc ¼
Z hcðxÞ=2

�hcðxÞ=2
qcðx; zÞdz: ð3Þ

Eq. (2) are partial differential equations with periodic, highly-
oscillating and non-continuous coefficients. Finding analytical
solution to this system of equations is rather difficult and much
time-consuming, hence it will be transformed, using the tolerance
averaging technique, into equations with constant coefficients.

3. Basic concepts of the tolerance averaging technique

The tolerance averaging technique was described and devel-
oped by Woźniak et al. in a numerous books and publications
[17,18]. Various applications of the method were presented in a
series of papers, e.g. by Jędrysiak [19,20], Jędrysiak and Michalak
[21,22] or Domagalski and Jędrysiak [23]. In the tolerance averag-
ing technique, several introductory concepts are applied, defined
below.

Denote a cell at x 2 KX byXðxÞ � xþX, andKX � K \ [z2XðxÞXðzÞ.
The definition of the averaging operation for an integrable function f
can be presented in the form:

hf iðxÞ ¼ 1
jXj

Z
XðxÞ

f ðyÞdy; x 2 KX: ð4Þ

As a result of applying the averaging operation to a periodic
function f in x, the constant averaged value of f is obtained.

Let us @kf be the kth gradient of function f ¼ f ðxÞ; x 2 K,

k ¼ 0;1; . . . ;a, (aP 0); @0f � f . By ef ðkÞð�; �Þ denote a function
defined in �K� Rm, and by d – a tolerance parameter. Let us also
introduce Kx � K \ [

z2XðxÞ
XðzÞ, x 2 �K.

Function f 2 HaðKÞ is called the tolerance-periodic function,
f 2 TPad ðK;XÞ, if for k ¼ 0;1; . . . ;a; the following conditions are
satisfied:

(1) ð8x 2 KÞ ð9ef ðkÞðx; �Þ 2 H0ðXÞÞ ½jj@kf Kxj ð�Þ � ef ðkÞðx; �ÞjjH0ðKxÞ 6 d�,
(2)

R
Xð�Þ

ef ðkÞð�; zÞdz 2 C0ð�KÞ.

Function ef ðkÞðx; �Þ is called the periodic approximation of @kf in
XðxÞ; x 2 K; k ¼ 0;1; . . . ;a;.

Function F 2 HaðKÞ is called the slowly-varying function,
F 2 SVa

d ðK;XÞ, if:

(1) F 2 TPad ðK;XÞ,
(2) ð8x 2 KÞ ½eF ðkÞðx; �ÞjXðxÞ ¼ @kFðxÞ; k ¼ 0; . . . ;a�.

Function / 2 HaðKÞ is called the highly oscillating function,
/ 2 HOa

d ðK;XÞ, if:

(1) / 2 TPad ðK;XÞ,
(2) ð8x 2 KÞ ½e/ðkÞðx; �ÞjXðxÞ ¼ @k e/ðxÞ; k ¼ 0;1; . . . ;a�,
(3) 8 F 2 SVa

d ðK;XÞ 9f � /F 2 TPad ðK;XÞef ðkÞðx; �ÞjXðxÞ ¼ FðxÞ@k e/ðxÞjXðxÞ; k ¼ 1; . . . ;a.

For a = 0 let us denote ef � ef ð0Þ.
Let gð�Þ be defined on �K as a highly-oscillating function,

g 2 HO2
dðK;XÞ, continuous together with gradient o1g. However,

gradient o2g is a piecewise continuous and bounded. Function gFig. 1. The periodic three-layered plate.
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