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a b s t r a c t

This paper presents a frequency-domain spectral element model for the symmetric laminated composite
plates which have finite dimensions in two orthogonal directions, i.e., in the x- and y-directions. The
spectral element model is developed by using two methods in combination: the splitting of original
boundary conditions and the so-called super spectral element method in which both the Kantorovich
method-based finite strip element method and the frequency-domain waveguide method are utilized.
The present spectral element model has nodes (or degrees of freedom (DOFs)) only on four edges of a
finite element, i.e., no nodes inside the finite element. Accordingly the total number of DOFs used in
the dynamic analysis can be drastically decreased to lead to a significant decrease of the computation
cost, when compared with the standard finite element method (FEM). The high accuracy of the present
spectral element model is verified in due course by the comparison with the results by two solution
methods: the exact theory available in the literature and the standard finite element model developed
in this study.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It has been well-recognized that composite materials have
many advantages over metallic materials due to their high
strength-to-density ratios. Thus composite materials have been
increasingly applied in the various fields of engineering including
aerospace, mechanical engineering, and civil engineering over the
past decades [1]. However, the laminated composite structures
are susceptible to various modes of damage including delamina-
tion. Therefore, it is very important to accurately estimate the
dynamic characteristics of the laminated composite structures
during the early design phase.

Although the subject of the dynamic analysis of laminated
composite plates (simply composite plates) has a quite long his-
tory, most existing analytical solutions to this classical problem
are considered to be at best approximate because it is difficult to
obtain exact closed-form solutions which simultaneously satisfy
the governing differential equations and the associated boundary
conditions, except for very specific types of plate such as the
Levy-type plates [2].

The finite element method (FEM) is certainly one of the most
powerful computational methods to analyze the dynamics of a

structure with very complex geometry, material distribution, and
boundary conditions. The accuracy of FEM depends on the size of
finite elements (or meshes) used in the analysis because the dis-
placement fields in a finite element are normally represented by
simple polynomial functions which are not dependent of vibrating
frequency. Accordingly, as a drawback of FEM, very fine meshing is
required to improve the solution accuracy especially at high fre-
quency: this may result in a significant increase of computation
cost. Thus, the spectral element method (SEM) can be considered
as an alternative to FEM because it can provide extremely accurate
solutions even at very high frequencies by using the so-called spec-
tral element matrix (or dynamic stiffness matrix) formulated from
frequency-dependent (dynamic) shape functions.

In the literature, there are two completely different methods
which have been called the same name ‘SEM’. The first one is the
frequency-domain SEM [3,4], where accurately formulated
dynamic stiffness matrix is used as the finite element stiffness
matrix. The second one is the time-domain SEM proposed by Pat-
era [5]. The Patera’s time-domain SEM is of course formulated in
the time domain by using the Legendre or Chebyshev orthogonal
polynomials as the shape functions in conjunction with the use
of the Gauss–Lobatto–Legendre integration rule. Thus, the word
‘spectral’ is time-wise for the frequency-domain SEM, while it is
space-wise for the time-domain SEM. The SEM considered in this
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study is the frequency-domain SEM and it will be called ‘SEM’
throughout the paper.

As mentioned previously, the spectral element matrix (or
dynamic stiffness matrix) for SEM is formulated from free wave
solutions that satisfy the governing differential equations
transformed in the frequency domain [4]. Thus the SEM can pro-
vide extremely accurate solutions by representing a whole uniform
structure member as a single finite element, regardless of its size,
and it has been often recognized as an exact element method.
The assembly of finite elements to a global structure system can
be conducted in an exactly analogous way as that used in the
standard FEM.

Despite of outstanding features of SEM, however its applica-
tions have been limited mostly to one-dimensional (1D) structures
(e.g., [3,4]) or the plates with very specific geometries and bound-
ary conditions (e.g., [6–18]). In the literature, there are very few
spectral element models for two-dimensional (2D) structures
which have finite dimensions in both x and y directions and being
subjected to arbitrary boundary conditions. This is because, for
such finite 2D structures, it is not easy to obtain exact free wave
solutions in analytical forms which are essentially required to for-
mulate spectral element matrix. Only a few researchers [19–20]
have presented approximate dynamic stiffness methods or spectral
element methods for the in-plane or transverse vibrations of the
finite plates. Recently, Park et al. [21] presented a spectral element
model for a rectangular membrane by using two methods in
combination to obtain the displacement field in a finite membrane
element: (1) the splitting of boundary conditions; (2) the super
spectral element method (SSEM) in which the Kantorovich
method-based finite strip element method and the frequency-
domain waveguide method are utilized.

As an extension of the author’s previous work [21], this paper
proposes a spectral element model for a symmetric composite
plate. The proposed spectral element model is formulated by using
the splitting of boundary conditions and the SSEM in combination.
Though the spectral element modeling method newly proposed in
this paper can be applied to various laminated plate theories
including the classical laminated plate theory (CLPT) and the
improved theory such as the first-order shear deformation plate
theory (FSDT), the discussion in this paper is limited to the CLPT.
The performance of the proposed spectral element model is then
evaluated in due course by the comparison with exact solutions
and the solutions by the standard finite element model developed
in this study.

2. Governing equations

2.1. Governing equations in the time domain

Consider a symmetric composite plate whose layup is symmet-
ric about the midplane of the plate. The composite plate is rectan-
gular and its dimensions in the x- and y-directions are lx and ly,
respectively. The origin at coordinates (x,y) is placed at the middle
of the composite plate, as shown in Fig. 1.

The governing differential equation of motion for the transverse
vibration of the symmetric composite plate is given by [1]
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where w(x,y, t) is the transverse displacement, f(x,y, t) is the exter-
nal force applied normal to the surface of the plate, q is the mass
per unit area of the plate, and Dij are the bending stiffnesses defined
by

Dij ¼ 1
3
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where �Q ðkÞ
ij are the transformed plane stress-reduced stiffness coef-

ficients of the kth orthotropic layer, (zk,zk+1) denote the thickness
coordinates of the bottom and top, respectively, of the kth layer,
and L denotes the total number of layers.

The boundary conditions associated with Eq. (1) are given by
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where (Mx,My) are the resultant bending moments and (Vx,Vy) are
the resultant transverse shear forces defined by
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and hx and hy are the slopes defined by
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2.2. Governing equations in the frequency domain

To formulate spectral element model for a composite plate by
following the general procedure introduced in Ref. [4], firstly all
the time domain quantities in the governing differential equations
of motion (Eq. (1)) and the boundary conditions (Eq. (3)) are
transformed into the frequency domain quantities by using the
discrete Fourier transform (DFT) theory [22]. For instance, the
transverse displacement w(x,y, t) and the external force f(x,y, t)
can be represented in the spectral forms as
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Fig. 1. The geometry of a symmetric laminated composite plate.
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