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a b s t r a c t

A frequency domain spectral finite element formulation is presented for the wave propagation analysis of
laminated composite curved beams using the first order shear deformation theory (FSDT) and the classi-
cal laminate theory (CLT). The elements are derived from the exact solution of the governing equation of
motion in frequency domain, obtained through Fourier transformation of the time domain equation. The
formulation is validated by comparing the results for natural frequencies with the published results. The
new elements are then employed to perform dispersion and wave propagation analyses of curved
composite beams. The numerical results reveal that the wavenumbers predicted by the CLT show large
deviation from those of the FSDT even for thin beams, and the deviation increases and occurs at lower
frequencies with the increase in the thickness to radius ratio. The orthotropy ratio of the composite
has a significant effect on the wavenumbers for tangential and mid-surface rotation modes. The wave
propagation response predicted by the CLT differs widely from the FSDT prediction, for thin and thick,
and shallow and deeply curved beams at both low and high frequencies. Thus, the CLT should not be used
for wave propagation analysis of even thin curved laminated beams.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated anisotropic composite materials are fast replacing
the isotropic materials in various aerospace, automotive, civil, mar-
ine and other structures due to several advantages such as the high
strength-to-weight ratio, stiffness-to-weight ratio, and their ability
to be tailored for specific applications by variation of the fiber
orientation and stacking sequence. Laminated composite curved
beams act as lightweight load carrying structural members in
many modern structures. Several studies on the vibration analysis
of curved composite beams have, therefore, been reported during
the past few decades, a review of which can be seen in [1]. As three
dimensional (3D) elasticity solutions for beams are analytically dif-
ficult to obtain and computationally involved, one dimensional
(1D) beam theories have been proposed in which the 3D elasticity
equations are reduced to 1D equations, by making a priori assump-
tions for the variations of the displacement variables across the
beam cross-section. The application of the classical laminate the-
ory (CLT) or Euler–Bernoulli beam theory [2], where the shear

deformation and rotary inertia are neglected, is restricted to very
thin geometry and low frequency range. For laminated composite
beams, the shear deformation and rotary inertia play a key role
in the response. The first order shear deformation theory (FSDT)
or the Timoshenko beam theory, accounting for the effects of shear
deformation and rotary inertia, is a simple and efficient 1D model
for analysing moderately thick structures [3,4]. Several higher
order shear deformation theories (HSDT) [5,6] and layerwise
approaches [7] have also been employed for the vibration response
of curved composite beams.

Dynamic problems such as the impact and elastic wave propa-
gation studies in laminated composite structures have received
much attention in recent years, for applications in structural health
monitoring (SHM), damage assessment due to blast and/or impact
loading etc. The finite element method (FEM) provides a conve-
nient tool for the analysis of structures of complex geometry and
boundary conditions. But, for modeling wave propagation, the ele-
ment mesh size should be typically 1

20th of the smallest wavelength
[8]. This increases the problem size, and the computational cost
becomes prohibitively large for modeling high frequency waves
used in SHM applications. Besides, the standard FEM is known to
introduce numerical dispersion and dissipation errors in the
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solution of wave propagation problems [9]. More recently, various
modifications to the classical FEM have been proposed for the
wave propagation analysis in composite structures, to overcome
these shortcomings. One such method is the time domain spectral
finite element method (SFEM) proposed by Patera [10]. It employs
higher-order interpolation functions with specific nodal positions,
such as Gauss–Lobatto–Legendre points and Chebyshev points,
which reduce the mass matrix to either sparse or diagonal, making
it more efficient than the conventional FEM. It has been used for
analysis of guided wave propagation in composite beams, plates
and panels [11–15]. The method shows reduced numerical disper-
sion, but the issue of large problem size remains.

Another approach is the frequency domain spectral element
method (SEM), which is also often called as SFEM. In this method,
proposed by Doyle [16], the dynamic problem is transformed to the
frequency domain using Fourier, Wavelet or Laplace transforms. It
enables one to obtain a frequency dependent dynamic stiffness
matrix for an element using exact or near-exact analytical solu-
tions. The assembled system of equations is solved in the fre-
quency domain, and the response is transformed back to the
time domain using the corresponding inverse transformation.
The concept of dynamic stiffness matrix had earlier been limited
only to free vibration studies [18,17,19], without undergoing the
spectral analysis procedure to obtain the time domain response.
The Fast Fourier Transform (FFT) based SFEM has been presented
in [20–22] for wave propagation in isotropic rods and beams.
Similar SFEMs for laminated composite beams have been pre-
sented using the CLT [23], FSDT [24,25], and recently, an efficient
layerwise theory [26]. SFEMs employing the wavelet transforma-
tion have also been presented for composite beams and plates
[27,28] based on the FSDT. The use of frequency domain SFEMs
for damage detection in beam structures through wave propaga-
tion has also been reported. The analysis of wave propagation in
delaminated multilayer composite beams using the FFT and wave-
let based SFEMs was presented using the usual FSDT [29–32] and
considering the thickness deformation as well [33].

In curved beams, the extensional and flexural modes are always
coupled, which makes their response more complex. A few studies
on the application of the wave propagation based approach for the
free vibration analysis of isotropic curved beams have been
reported [34–36]. But, even though there have been many studies
on the wave propagation analysis of straight composite beams
structures, studies on its curved counter part have not been
reported so far in the literature. The authors [37] have recently
developed an FFT based SFEM for isotropic curved beams using
the classical shell theory, FSDT and a refined third order theory.
In this paper, we extend this work to develop FFT based spectral
finite elements for wave propagation analysis of curved composite
beams using the FSDT and the CLT. The formulation incorporates
linear viscous damping. The developed elements are used to obtain
wave dispersion relations, free vibration response and wave
propagation response under modulated sinusoidal tone burst
excitation for composite beams. The results of the two models
are compared to understand the effect of shear deformation on
these responses.

2. Governing equations of motion

2.1. First order shear deformation theory

Consider an L-layered composite circular curved beam (Fig. 1) of
thickness h, width b and radius R of the middle surface. The
mid-surface is considered as the reference surface ðz ¼ 0Þ. The
z-coordinate of the top of the kth layer numbered from the bottom
is denoted as zk, and its material symmetry direction x1 makes an
angle ak to the circumferential axis, h. In the FSDT, the variations of

the tangential displacement u and the radial displacement w along
the thickness direction are approximated as

uðh; z; tÞ ¼ u0ðh; tÞ þ zw0ðh; tÞ; wðh; z; tÞ ¼ w0ðh; tÞ ð1Þ

where t denotes time, and u0; w0 and w0 denote the tangential dis-
placement, the radial displacement and the rotation of the
mid-surface, respectively. The strain–displacement relations in the
polar coordinate system ðr; hÞ are given by

eh ¼ ðu;h þwÞ=ðRþ zÞ; czh ¼ u;z þ ðw;h � uÞ=ðRþ zÞ ð2Þ

where a subscript comma denotes partial differentiation. The tan-
gential and shearing strain components, eh and czh, are related to
the corresponding stress components rh and szh for the kth lamina
as

rh ¼ Q̂ k
11eh; szh ¼ Q̂ k

55czh ð3Þ

where Q̂ k
11 and Q̂ k

55 are the stiffness coefficients of the kth lamina,
which are obtained from the Young’s moduli Ei, shear moduli Gij

and Poisson’s ratio mij of the kth layer as

Q̂ 11 ¼ 1=�s11; Q̂ 55 ¼ 1=�s55; c¼ cosak; s¼ sinak

�s11 ¼ c4s11þ c2s2ð2s12þ s66Þþ s4s22; �s55 ¼ s2s44þ c2s55;s11 ¼ 1=E1;

s22 ¼ 1=E2; s12 ¼�m12=E1; s44 ¼ 1=G23; s55 ¼ 1=G13; s66 ¼ 1=G12:

ð4Þ

The equations of motion for the curved beam and the corre-
sponding variationally consistent boundary conditions are derived
from the Hamilton’s principle which statesZ t2

t1

ðdT � dU þ dWÞdt ¼ 0 ð5Þ

for all virtual displacements du0; dw0 and dw0 that vanish at
t ¼ t1; t2, where dT and dU are the first order variations of kinetic
and strain energies of the beam, respectively, and dW denotes the
virtual work done by the external forces. For a curved beam with
span angle a, these variations are obtained as

dT ¼
Z a

0

Z
z
qkð _ud _uþ _wd _wÞðRþ zÞbdzdh ð6Þ

dU ¼
Z a

0

Z
z
ðrhdeh þ szhdczhÞðRþ zÞbdzdh ð7Þ

dW ¼
Z a

0
½ðq2

z ð1þ zL=RÞ � q1
z ð1þ z0=RÞ � g2 _w0Þdw

� g1 _u0du0�Rdhþ h rhduþ szhdwija0 ð8Þ

where qk denotes the mass density of the kth layer, and q1
z and q2

z

denote the normal tractions applied on the inner ðz ¼ z0 ¼ �h=2Þ
and outer ðz ¼ zL ¼ h=2Þ surfaces of the beam, and g1 and g2 denote
the viscous damping constants associated with the tangential and
radial velocity components, respectively.

Substituting the expressions of displacements and strains from
Eqs. (1) and (2) into Eqs. (6)–(8), performing the integration over

Fig. 1. Composite curved beam section.
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