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a b s t r a c t

The linking of microstructure uncertainty with the random variation of material properties at the
macroscale is particularly needed in the framework of the stochastic finite element method (SFEM)
where arbitrary assumptions are usually made regarding the probability distribution and correlation
structure of the macroscopic mechanical properties. This linking can be accomplished in an efficient
manner by exploiting the excellent synergy of the extended finite element method (XFEM) and Monte
Carlo simulation (MCS) for the computation of the effective properties of random two-phase composites.
The homogenization is based on Hill’s energy condition and involves the generation of a large number of
random realizations of the microstructure geometry based on a given volume fraction of the inclusions
and other parameters (shape, number, spatial distribution and orientation). In this paper, the mean value,
coefficient of variation and probability distribution of the effective elastic modulus and Poisson ratio are
computed taking into account the material microstructure. The effective properties are used in the frame-
work of SFEM to obtain the response of a composite structure and it is shown that the response variability
can be significantly affected by the random microstructure.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A powerful tool in computational stochastic mechanics is the
stochastic finite element method (SFEM). SFEM is an extension of
the classical deterministic FE approach to the stochastic frame-
work i.e. to the solution of stochastic problems whose (material
and geometric) properties are random with the FE method. The
considerable attention that SFEM received over the last two dec-
ades can be mainly attributed to the understanding of the signifi-
cant influence of the inherent uncertainties on systems behavior
and to the dramatic increase of the computational power in recent
years, rendering possible the efficient treatment of large-scale
problems with uncertainties [1]. In most SFEM applications, the
description of macroscopic material properties using random vari-
ables/fields is based on arbitrary assumptions of the respective
probability distribution. The simplest option consists of a straight-
forward randomization of one or more material parameters, used
in deterministic constitutive models. In the case of a linear elastic
analysis, only the Young modulus is typically assumed to be ran-
dom [2,3], but examples where the Poisson ratio is treated as a

random field are available, e.g. [4–6]. In addition, the correlation
structure of the random field is often arbitrarily assumed and the
correlations of different material parameters are typically ignored
in the random field model. This is mainly due to the fact that
insufficient experimental evidence is usually available to validate
all of the detailed characteristics of a macro-random field.

The mechanical behavior of heterogeneous and in particular of
composite materials is governed by the mechanical properties of
their individual components, their volume fractions and other
parameters defining their spatial and size distribution. As men-
tioned before, only the macroscopic mechanical behavior is of
interest in many cases. However, the microstructure attributes of
this type of materials are extremely important for a better under-
standing of their intrinsic properties. This is the reason for which
the linking of micromechanical characteristics with the random
variation of material properties at the macroscale has gained par-
ticular attention in recent years. In [7], the quantitative character-
ization of the microstructure of random heterogeneous materials is
treated in detail and the connection between material properties
and microstructure is established for several cases. In [8], a process
for the evaluation of stochastic formulations for modeling the con-
stitutive behavior of heterogeneous solid materials is proposed. A
FEM incorporating microstructural material randomness below
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the level of a single (mesoscale) finite element is described in [9]. A
moving-window micromechanics technique is applied in [10] to
produce material property fields associated with the random
microstructure of particulate reinforced composites. A homoge-
nization procedure for determining effective properties of
composite structures with stochastic material characteristics is
considered in [11]. Auto- and cross-correlations of material proper-
ties are estimated in [12] using simple micromechanical models
and homogenization. The relation between various microstructural
properties and the overall behavior of stochastically heterogeneous
beams is studied in [13]. The effect of microstructural randomness
on the fracture behavior of composite cantilever beams is investi-
gated in [14] through the application of cohesive zone elements
with random properties. The generalized variability response
function (GVRF) methodology is used in [15] to compute the
displacement response and the effective compliance of linear plane
stress systems. In [16], the macroscale response of polycrystalline
microstructures and the accuracy of homogenization theory for
upscaling the microscale response are examined by performing
direct numerical simulations of this type of microstructures
embedded throughout a macroscale structure (I-beam). The influ-
ence of a microscopic random variation of the elastic properties of
component materials on the mechanical properties and stochastic
response of laminated composite plates is investigated in [17].

Despite the aforementioned efforts, the number of publications
highlighting the role of microstructure uncertainty in the
framework of SFEM is still very limited. As a step forward in this
direction, the effective properties of random two-phase media
can be computed by exploiting the excellent synergy of the
extended finite element method (XFEM) and Monte Carlo simula-
tion (MCS). The homogenization is based on Hill’s energy condition
and involves the generation of a large number of random realiza-
tions of the microstructure geometry based on a given volume
fraction of the inclusions and other parameters, such as shape,
number, spatial distribution and orientation (Section 2). The
statistical characteristics (mean value, coefficient of variation and
probability distribution) of the effective elastic modulus and
Poisson ratio are computed taking into account the material
microstructure (Section 3). In Section 4, the effective properties
are used in the framework of SFEM to obtain the response of a
composite structure and useful conclusions are derived regarding
the effect of random microstructure geometry on the probabilistic
characteristics of the response.

2. Homogenization of random heterogeneous media using
XFEM and MCS

The linking of micromechanical characteristics with the random
variation of material properties at the macroscale has become a
prerequisite in material characterization, especially in nanocom-
posites [18]. Specifically, the mechanical behavior of such hetero-
geneous materials is governed by the mechanical properties of
their individual components, their volume fractions and other
parameters defining their spatial and size distribution. In a previ-
ous work by Savvas et al. [19], it is highlighted that the statistical
characteristics of the effective properties can also be significantly
affected by the shape of the inclusions, especially in the case of
large volume fraction and stiffness ratio. For example, this is the
case of graphene nano-platelet (GnP)-reinforced composites where
the stiffness ratio between the polymer matrix and graphene nano-
filler is approximately 1/1000.

Effective homogeneous properties of composite materials can be
extracted analytically, numerically or in a hybrid manner through
appropriate homogenization techniques, e.g. [7,11,12,17,20–27]. A
novel homogenization approach was presented in [19], where
extended finite element analysis of microstructure coupled with

MCS was used. This MCS based stochastic homogenization
approach involves the computational analysis of a large number
of randomly generated realizations of the composite medium using
XFEM. The results derived from the micromechanical analysis are
then used in the calculation of the effective properties of an
equivalent homogeneous medium, where Hill’s energy condition
is satisfied. These effective properties will serve as a basis for the
stochastic finite element analysis of structures made from random
composites, as explained in Section 3.

It is worth noting that in [19], the influence of inclusion shape
on the effective Young modulus and Poisson ratio of the homoge-
nized medium was demonstrated through histograms of the corre-
sponding properties, along with the statistical convergence of their
mean and coefficient of variation (COV). In Section 2.2 of this
paper, the effect of inclusion shape on the effective properties of
the random composites will also be quantified in terms of the
inclusion surface to volume ratio with regard to the mean values
of the stochastic material properties for various volume fractions.

2.1. Methodology

2.1.1. Problem formulation
Consider a medium which occupies a domain X � R2 whose

boundary is represented by C. Let prescribed traction �t applied
on surface Ct � C (natural boundary conditions) and prescribed
displacements �u applied on Cu � C (essential boundary condi-
tions). The medium contains an inclusion which occupies the
domain Xþ and is surrounded by the internal surface Cincl � C such
that X ¼ Xþ [X� and C ¼ Ct [ Cu [ Cincl (Fig. 1). The governing
equilibrium and kinematic equations for the elastostatic problem
of the medium is:

div rþ b ¼ 0 in X ð1Þ
r ¼ C : e ð2Þ

where b are the body forces acting on the medium,
e ¼ 1

2 ruþruT
� �

is the second order tensor of the measured strains
and C is the fourth order elasticity tensor. The essential and natural
boundary conditions are:

u ¼ �u in Cu ð3Þ
r � n ¼ �t in Ct ð4Þ

where n is the unit outward normal to Ct .

Fig. 1. Schematic of a medium which occupies a domain X ¼ Xþ [X� , contains an
inclusion ðXþÞ and is subjected to essential and natural boundary conditions on
surfaces Cu and Ct respectively.
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