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a b s t r a c t

In this paper, the dispersion properties of elastic waves in the layered piezoelectric/piezomagnetic (PPC)
hollow cylinder are investigated. The axisymmetric formulation is based on the Scaled Boundary Finite
Element method. High-order elements are utilized for the discretization. We develop the mode sorting
method to distinguish modes based on the reciprocity relation of the magneto-electro-elastic media.
The dispersion relationship and wave structures of various layered PPC hollow cylinders are presented.
Besides, we discuss impacts of the stacking sequence and radius-thickness ratio on the dispersive behav-
ior and discover the frequency deletion of longitudinal modes.
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1. Introdution

Piezoelectric–piezomagnetic composites (PPC) have recently
attracted considerable of studies, compared to the one of single
phase material. These materials are employed now in a variety of
mechanical, civil and aerospace applications as sensors, actuators,
and storage devices [1,2] at various scales. The growth of such
applications requires the accurate knowledge of elastic wave prop-
agation to help to sign and optimize PPC devices. Tiersten [3]
derived the linear piezoelectric equations of the infinite anisotropic
plate. By applying Fourier transform method, Paul and Venkatesan
[4] discussed the axial waves dispersion relationship in a hollow
piezoelectric cylinders. Steeart and Young [5] discovered the
cut-off frequencies on wave propagation of electro-elastic compos-
ite plate. For the analysis of elastic waves on multilayered compos-
ite structures, the most common method is the matrix formalism.
Wang and Rokhlin [6] obtained an asymptotic solution of a general
anisotropic piezoelectric thin layer by using the transfer matrix
based on a simple second-order asymptotic expansion. Reinhardt
et al. [7] developed a numerically stable scattering matrix model
of metal and fluid layers and half spaces and analyzed the problem
of plane wave propagation in piezoelectric and dielectric
multilayered. The surface impedance matrices was employed to
solve the dispersion curves on wave propagation in high
impedance-contrast layered plates by Zhang et al. [8]. Lahmer
et al. investigated the detection of flaws [9] and dynamic fracture

[10] in piezoelectric structures using the extended finite element
method. However, the solution for this method may be difficult,
and part of modes may be missed.

Maradudin [11] firstly presented the orthogonal function method
to study wave propagation in homogeneous semi-infinite wedges.
This approach based on polynomial expansions allows an algebraic
eigenvalue equation to take the place of transcendental dispersion
equation, to overcome previous drawbacks. Yu et al. proposed the
dispersion relationships of inhomogeneous piezomagnetic-
piezoelectric spherical curved plates [12] and rectangular bar [13],
by using Legendre orthogonal polynomial series expansion. Mater
et al. [14] presented propagation constants and wave structures in
multilayered magneto-electro-elastic composite, potentially depos-
ited on a substrate by employing the Legendre and Laguerre polyno-
mial method. However, the orthogonal function method is only
applicable to simple cross section where the boundary conditions
are easily shown, and obtain the dissymmetric eigenmatrix which
is disadvantage of the solution of the dispersion curves.

Compared to the above method, the finite element method has
very strong adaptability in the boundary conditions and developed
squares symmetric stiffness. The semi-analytical finite element
(SAFE) method as a prevalent theory is exploited to investigate
the guided waves. Corrtes [15,16] presented resonance behavior
of an array of piezoelectric plates and obtained the dispersion rela-
tionship of elastic guided waves in piezoelectric infinite plates with
inversion layers.

In this paper, the Scaled Boundary Finite Element method
(SBFEM) that the scale parameter is equal to one is adopted to ana-
lyze guided wave propagation in the layered PPC hollow cylinder,
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similar to the SAFE method. The SBFEM as a novel semi-analytical
approach was originally developed by Wolf and Song [17] to com-
pute the dynamic stiffness of an unbounded domain. It is an exten-
sion of Han’s work, in which dispersion problem of helical
waveguide has been addressed. Gravenkamp [18] proposed the
dispersion curves for axisymemetric waveguides of elastic media
using the SBFEM. More, the SBFEM was extended to a
mixed-mode crack propagation model based on linear elastic frac-
ture mechanics [19]. This approach reduces a three-dimensional
problem of waveguides to a one-dimensional for axisymemetric
waveguides, so that only the radical length of the cross section is
needed to mesh.

We give the axisymemetric formulation of the SBFEM based on
the order elements. For dispersion scatters obtained from the
SBFEM are difficult to differentiate from each other, a mode sorting
method for axisymemetric waveguides is established to distin-
guish modes by applying the reciprocity relation of the
magneto-electro-elastic media. Finally, We give the dispersion
curves and wave structures of various layered PPC hollow cylinder
and discuss impacts of the stacking sequence and radius-thickness
ratio. In addition, we also discover a new phenomenon: the fre-
quency deletion of longitudinal modes for the hollow cylindrical
piezomagnetic waveguide.

2. Formulation of the SBEFM

Consider an anisotropic magneto-electro-elastic cylinder which
is infinite in the z direction of wave propagation but finite in the
vertical direction of the cross-section, as shown in Fig. 1. Such a
material, the generalized constitutive equations are given by

rij ¼ Cijklekl � ekijEk � qijkHk ð1aÞ
Di ¼ eiklekl þ tikEk ð1bÞ
Bi ¼ qijkekl þ likHk ð1cÞ

where rij; Di and Bi are the stress tensor, the electric displacement
and magnetic induction, respectively; ekl; Ek and qijk are the strain
tensor, the electric field and magnetic field, respectively;
Cijkl; ekij; qijk; tik; lik are material parameters, i.e., the elastic con-
stants, the piezoelectric constants, the piezomagnetic constants,
the dielectric permittivity constants and the magnetic permeability,
respectively; Here, Einstein summation convention are used, where
i; j; k and l ¼ 1;2;3, corresponding to r; h; z, respectively.

We define the generalized stress vector �r and strain vector �e.
The generalized constitutive equations can be rewritten as

�r ¼ H�e ð2Þ

where the generalized constitutive matrices

H ¼
C �eT �qT

e t 0
q 0 l

2
64

3
75 H� ¼

C �eT �qT

�e �t 0
�q 0 �l

2
64

3
75 ð3Þ

The relationship between the generalized strain and general-
ized displacement can be expressed as

�e ¼ Lz �u;z þ
1
r

Lh �u;h þ Lr �u;r þ
1
r

L0 �u ð4Þ

where the generalized displacement �u ¼ u1 u2 u3 �/ �u½ �T ,
which consists of the displacements ui, the electric potential /
and the magnetic potential u; The differential operator Lz; Lh; Lr

and L0 in cylinder coordinates can be given in Appendix.
In this paper, the formulation of the dispersion relationship is

based on the SBEFM. We can assume its displacement is indepen-
dent of the time harmonic e�ixt , where t is the time and x denotes
the angular frequency. The displacement after the separation of
variables can be written as the Fourier series of the h direction

�u ¼
X1
n¼0

�ureinh

 !
e�iðxt�kzÞ ð5Þ

There is no external forces, body forces, electric charge and cur-
rent density for studying properties of propagation modes.
Traction-free and open-circuit boundary conditions are assumed
in this analysis:

r11 ¼ r12 ¼ r13 ¼ 0;D1 ¼ B1 ¼ 0; at r ¼ r0 and r1 ð6Þ

where r0 and r1 are inside and outside radius of the hollow cylinder,
respectively. Based on the Hamilton principle, the vibrational for-
mulation of electro-magneto-elastic dynamics can be obtained as

d
Z

KE � Pð Þdt ¼ 0 ð7Þ

where KE and P are the kinetic energy and electrical enthalpy.

KE ¼ 1
2

�eH��e; P ¼ 1
2
q €�u
� �2

ð8Þ

where the material density matrix q can be given Appendix; the
subscript of €�u is the second derivative of time.

The free boundary is founded for any h, or can be express as the
form which is independent of h. We can adopt Eq. (5) into Eq. (7) to
derive a sires of equations, exclusive of h, based on the orthogonal-
ity of the trigonometric function. Solution will be obtained for each
order n separately, where the integra n denotes the circumferential
order and the mode label. So the displacement field can be written
as

�u ¼ �ure�iðxt�kz�nhÞ ð9Þ

In the SBFEM of the cylindrical waveguide, a scaling coordinate
�z parallels to the z direction and measures the length from the scal-
ing center at infinity. The geometry of a hollow cylinder is
described by one-dimensional finite element with local coordinate
g in the radical direction only. The following steps are derived for
one isoparametric element to obtain the stiffness matrix. The
geometry of a finite element is represented by interpolating its
nodal coordinates ri using the local coordinates g:

rðgÞ ¼ NiðgÞri ð10Þ

where NiðgÞ is the mapping function. To transform the differential
operator of the Cartesian coordinate to the local coordinate, the
relationship is required

x ¼ cosðhÞr gð Þ

y ¼ sinðhÞr gð Þ

@h

@g

" #
¼ J

@x

@y

" #
ð11Þ

with the Jacobian matrix

J ¼
� sin hð Þr gð Þ cos hð Þr gð Þ;g
cos hð Þr gð Þ sin hð Þr gð Þ;g

" #
ð12Þ

Fig. 1. Sketch map of a hollow cylinder.
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