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a b s t r a c t

The quality factor is known as a critical and important feature to achieve efficient resonant response of
micro/nano beams. In fact, the quality factor plays a significant role in the sensitivity and resolution of
resonant vibration behavior of small-size structures. The presented paper investigates the quality factor
of composite micro/nano beams employing the nonlocal Euler–Bernoulli beam theory. Composite beams
having arbitrary laminated layers and discontinuities are taken into consideration. Regarding to size
effects, a general formulation is derived to calculate the quality factor of the nonlocal beams attributed
to airflow damping and support losses. To reduce complexity of the problem, a nondimensional param-
eter is introduced to calculate the quality factor. To provide guidelines for determining the quality factor
of the nonlocal composite beams, general results are presented for several resonant modes of vibration.
The obtained results indicate that the quality factor is decreased by increasing the nonlocal size effects.
However, the size effects play more prominent role at the higher resonant modes of vibration.
Furthermore, it is shown that the quality factor is affected by the boundary conditions and dimensional
characteristics of the micro/nano composite beams. Accordingly, the quality factor is increased by
decreasing the slenderness ratio of the beam.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, new small devices known as micro/nano
structures have been emerged to engineering fields due to
advanced techniques in manufacturing and fabrication [1–4].
These innovative small structures exhibit essential and imperative
role in the modern technologies because their mechanical features
are extremely improved by decreasing their dimensions. Therefore,
these small structures are widely implemented in several micro/
nano systems such as atomic force microscope (AFM), micro/nano
switches, micro/nano resonators and bio-sensors [5–8]. Currently,
micro/nano beam-like structures are identified as basic con-
stituents of these small systems because of several problems in
manufacturing joints in micro-to-nano scale [9]. Furthermore,
micro/nano beams exhibit several novel features like simple man-
ufacturing and wide-bandwidth frequency operation [10].

In micro-to-submicron scales, beam motion is originated from
their displacement and deflection in the response of external
forces. However, micro/nano beams can operate in static or
dynamic mode, but in the most applications, they are operated in

resonant modes of vibration [11]. Thus, resonant vibration charac-
teristics such as frequency response and sensitivity of such
small-size beams play a crucial role in enhancing their perfor-
mance and efficiency. Moreover, the vibrating behavior of the res-
onant micro/nano beams is extremely relevant to their quality
factors. The quality factor is a key parameter to improve response
and sensitivity of the beam in infinitesimal scales [12]. The higher
quality factor causes more stable frequency response, better sensi-
tivity and resolution, and the lower sensing noise in micron and
sub-micron scales [12,13]. Therefore, it is essential to achieve
higher values of the quality factor for resonant micro/nano beams.

Generally, the quality factor is defined as a measurement crite-
rion of energy dissipation to its stored energy in a resonant struc-
ture. The quality factor can be related to several energy dissipation
mechanisms e.g. hydrodynamic damping exerted by an ambient
environment, support losses, thermoelastic damping, surface and
volume losses [14–17]. However, the quality factor of micro/nano
beams operated in air environments are mainly affected by the vis-
cous airflow damping comparing to other energy dissipation mech-
anisms [17–19]. The air damping is attributed to energy dissipation
of the resonant small beams in interaction with ambient air
environments. Thus, the air damping and corresponding quality
factor is related to resonant frequency, dimensional and material
properties of the micro/nano beams. Accordingly, the higher
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quality factor and consequently less energy dissipation can be
achieved by appropriate material selection of the micro/nano
beam. However, it is restricted by typical affordable materials in
micro/nano fabrication technology [20].

In addition, dimensional and geometrical properties of the
micro/nano beams have great influence on their resonant vibrating
frequencies and quality factors in air surroundings. Dimensional
effects on the quality factor of silicon microcantilever beams in
air environments are presented in [18]. In this work, the effect of
the beam dimensions especially length and thickness on the qual-
ity factor at the fundamental resonance vibration is only studied.
Lee et al. [19] presented a numerical approach to investigate
dimensional effects on the quality factor of uniform micro beams
in free air space. They considered the classical continuum model
of the microcantilever beams and calculated their quality factor
attributed with air viscous damping numerically and experimen-
tally. Damircheli and Korayem [21] investigated effects of geomet-
rical properties of an atomic force microscope microcantilever on
its resonant response in air environments. However, they devel-
oped vibration equations of the beam based on classic continuum
mechanics and studied first four flexural modes of vibration.

As it can be seen from the literature, several researches have
been studied the quality factor and resonant vibrating behavior
of micro/nano beams using classical elasticity theory. On the other
hand, experiments and molecular simulations in micro/nano scale
have demonstrated effects of the size-dependent mechanical
behavior on micro/nano systems [22–24]. Zhang et al., [25]
employed molecular dynamics simulation to investigate damping
effects on the quality factor of a nano-resonator and showed such
effects are excluded in the analytical model based on classical con-
tinuum theory. In fact, in micron and sub-micron scales, material
microstructures are noticeably important and the classic contin-
uum theory does not enable to interpret it. On the other hand, in
micro and nano scales, molecular simulations are suffered from
excessive computations and experiments are extremely difficult
as well. Therefore, the size-dependent elasticity theories have
emerged into micro/nano researches and they obtained a great
deal of scientific interests. Civalek and Akgöz [26] investigated
size-dependent free vibration of non-uniform composite micro
beams based on modified couple stress theory. Jiang and Yan
[27] employed the surface elasticity theory to study static behavior
of nanowires. They presented explicit solutions to analyze surface
effects on deflection of the beam. Zhang et al. [28] modeled and
analyzed size effects of uniform micro beams implementing mod-
ified couple stress theory. They showed the size effects on buckling
behavior of the beam. Akgöz and Civalek [29] studied longitudinal
free vibration of a micro-scaled bar based on the strain gradient
elasticity theory. They showed that the difference between natural
frequencies predicted by current and classical models becomes
more prominent for higher modes of vibration. Also, they investi-
gated buckling behavior of size-dependent microbeams made of
functionally graded materials. In this paper, different boundary
conditions on the basis of Bernoulli–Euler beam and modified
strain gradient theory are considered [30].

In addition, Eringen [31] proposed nonlocal continuum
mechanics formulation which has extensive potential applications
to investigate the size effect on small-scale systems. Peddison et al.
[32] revealed the potential of the nonlocal elasticity method for
size-dependent modeling of micro/nano systems. Along this line,
the nonlocal theory is presented in [33] to analyze buckling and
vibration of nonlocal simply supported beams. Civalek and Demir
[34] presented bending formulation of microtubules based on non-
local Euler–Bernoulli beam theory. Then, they implemented differ-
ential quadrature method to solve the problem numerically. Also,
they studied free vibration analysis of uniform cantilever micro-
tubules based on nonlocal continuum model [35]. They presented

some numerical results to show the effect of small-size effects on
bending and vibration of micro beams. Nazemizadeh and
Bakhtiari-Nejad [36] investigated size-dependent free vibration
of piezoelectric actuated beams based on the nonlocal elasticity
theory. They developed an analytical solution and studied size
effects on natural frequencies of the system.

Although the number of researches have studied the quality
factor of uniform resonant micro/nano beams based on classical
continuum models in air environment, but to the best of our
knowledge there is not any research work available in the litera-
ture that apply the concept of size effects to resonant characteris-
tics of micro/nano beams. Therefore, there is a need to analyze size
effects on the quality factor of the resonant micro/nano beams
employing size-dependent elasticity theories. This paper presents
a general approach to determine the quality factor and resonant
characteristics of non-uniform composite micro/nano beams in
air environments based on nonlocal continuum models. The gov-
erning equations of the nonlocal composite beam with arbitrary
laminated layers along its thickness and discontinuities along its
length are derived. To formulate the quality factor, the airflow
damping and support losses are taken into account. By employing
various nonlocal boundary conditions, the quality factor of the
composite beam is formulated. Then, a number of simulations
are carried out to evaluate the quality factor of the beam at various
resonances in air environments. Also, nonlocal and dimensional
effects on the quality factor of composite beams are studied and
simulation results are compared and discussed.

2. Nonlocal composite nano/micro beam

In this section, governing vibrating equation of a general com-
posite micro/nano beam is derived based on the nonlocal contin-
uum theory. The pioneering works on the nonlocal continuum
mechanics were reported by Eringen [37,38]. Then the nonlocal
elasticity theory has accepted and applied by several researchers
in the field of micro- and nanotechnology [34–36]. Moreover, this
theory has been compared with molecular dynamic simulations
and a good agreement has been observed [39].

Despite of the classical continuum mechanics, the nonlocal
elasticity theory considers that the stress components at a given
point are not only a function of the strain components of the same
point but also to all other points of a medium. Therefore, for
homogenous and isotropic elastic solids, the nonlocal elasticity
theory is formulated by the following equations [37]:

rnl
kl;l þ q f k �

@2uk

@t2

 !
¼ 0 ð1Þ

rnl
klð~rÞ ¼

Z
V
a ~r �~r0j j;vð Þrl

kl
~r0ð ÞdV ~r0ð Þ ð2Þ

where rnl
kl is the nonlocal stress tensor, q is the mass density of the

body,~r denotes a reference point, f k is the body force density, ~u is
the displacement vector at the reference point ~r in the body,
rl

kl
~r0ð Þ indicates the classical stress tensor at any point~r0 in the body,

V denotes the volume occupied by the body, ~r �~r0j j is the distance in
Euclidean form and v is defined as a material constant. The nonlocal
kernel a x� x0j j is stated as the influence of the strain at the point~r0

on the stress at the point~r in the elastic body. Thus, by defining an
appropriate nonlocal kernel, the nonlocal constitutive given by Eq.
(2) is reduced to the differential equation [37]:

Rrnl
kl ¼ rl

kl ð3Þ

where the differential operator is assumed as R ¼ 1� s2r2; r2 is
the Laplacian operator and s is defined as the nonlocal scale coeffi-
cient that incorporates the size-dependent small scale factor.
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