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a b s t r a c t

When an unsymmetric laminated plate is considered, the coupling of in-plane and plate bending prob-
lems is unavoidable. The boundary element for the coupled stretching–bending analysis was developed
previously with suitable complex form fundamental solution. Usually, the singular integrals involved in
the boundary element are treated by the conventional methods such as Gaussian quadrature rule for
regular functions, logarithmic Gaussian quadrature formulas for the function with logarithmic terms,
and the use of finite part integrals for the evaluation in sense of Cauchy principal value, or calculated
indirectly through the employment of rigid body movement. To avoid the complexity of the numerical
integration with complex form fundamental solution, in this paper we provide the explicit closed-form
solutions for the singular integrals, which simplify the computer programming and expedite the
numerical computation. And hence, the accuracy and efficiency of the associated boundary elements
are improved through the newly derived analytical solutions.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In practical applications, to take advantage of the designable
characteristics of composite laminates, it always has the possibility
to design a plate with unsymmetric laminated composites. In that
case, the stretching–bending coupling may occur no matter what
kind of loading is applied on the laminated plates. Due to the
coupling of stretching and bending deformations, the stress
analysis of the unsymmetric laminated plates become much more
complicate than that of the metallic plates or the symmetric
laminated plates since the latter can be treated by considering only
in-plane or plate bending analysis. To effectively treat the coupled
stretching–bending deformation, a boundary integral equation
(BIE) was derived using the reciprocal theorem of Betti and
Rayleigh, and its associated fundamental solution was derived
using the Stroh-like complex variable formalism [1]. In numerical
programming it was found that some integrals of BIE derived in
[1] will become singular when the field point approaches to the
source point, and hence a modified BIE and boundary element
was proposed later [2] by separating the integrals into two parts:
singular part and regular part.

Generally, the integrals involved in the boundary elements may
be categorized into regular integrals, weakly singular integrals,
strongly singular integrals, and hypersingular integrals [3]. The
numerical integration of the regular integral is straightforward
and can be carried out using standard Gaussian quadrature rule.
The singular integrals with the forms of lnr and 1/r where r is
the distance from a source point to a field point can be evaluated
via logarithmic Gaussian quadrature formulas [4], direct computa-
tion of the integrals [5,6] or the use of finite part integrals [3,4,7–
11]. The discussion about the concepts of Cauchy principal value
and finite part integrals can be found in [12–18]. Suitable employ-
ment of rigid body movements may also provide an indirect result
related to the singular integrals [5,19,20].

Although the singular integrals are common problems for
boundary element method and their solution techniques are well
documented, most of them are restricted to two-dimensional or
three-dimensional analysis with the fundamental solutions
expressed in real form. Very few of them discussed the coupling
between in-plane and plate bending problems with complex form
fundamental solutions. Since the fundamental solutions embedded
in the boundary element analysis for unsymmetric laminated com-
posites are written in complex variable matrix functions, at the
first glance it is not that direct to use the classical methods to deal
with the singular integrals. For example, the logarithmic function
with real variable is only valid for the positive argument, whereas
the same function with complex variable is valid for any complex
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number (including negative real number) and to have a unique
value a suitable branch cut should be selected for the principal
value of the logarithmic function. Due to the selection of the
branch cut for a unique function value, discontinuity may occur
at the cut region. And hence, to satisfy the continuity requirement
for a continuum a special attention should be made on the numer-
ical programming with complex function. This problem will not
occur in the real form fundamental solution, but now for the
coupled stretching–bending analysis it happens if the available
fundamental solutions are expressed in complex form.

To deal with the complex function singular integrals, the funda-
mental solutions obtained for the coupled stretching–bending
analysis were re-derived in this paper to make the singular
integrals expressed in real function. Within each element the
deflection is interpolated by a third order polynomial, and all the
other quantities such as boundary geometry and in-plane displace-
ments, normal slopes, and the tractions, are interpolated by a
linear function. With the newly derived fundamental solutions
and the selected interpolation functions, the analytical solutions
of the singular integrals involved in the influence matrices of the
boundary elements for the coupled stretching–bending analysis
are obtained in this paper.

To verify the correctness of our derived analytical solutions,
comparison was made with the Cauchy principal value [12] calcu-
lated by using the technique of finite part integrals. An alternative
verification was also made through the free term coefficients cal-
culated via the use of rigid body movements. Furthermore, to show
its applicability to the general problems of laminated plates, a sim-
ply supported unsymmetric laminate [0/45/90/30/�45/90/45/�60]
with a rectangular cut-out subjected to a uniform lateral load is
illustrated. The results of deformation and stresses calculated by
the present boundary element are shown to be well agreed with
those obtained by the commercial finite element software ANSYS.

2. Stroh-like formalism for coupled stretching–bending theory

In classical lamination theory, the equations of displacement
fields, strain–displacement relations, constitutive laws and equilib-
rium can be written as follows:
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in which u; v and w are the displacements in x; y and z directions;
u0; v0 and w0 are the middle surface displacements; ðex; ey; cxyÞ are

the strains, ðe0
x ; e0

y ; c0
xyÞ ¼ ð@u0=@x; @v0=@y; @u0=@yþ @v0=@xÞ are the

mid-plane strains and ðjx;jy;jxyÞ ¼ ð�@2w=@x2;�@2w=@y2;

�2@2w=@x@yÞ are the plate curvatures; Nx; Ny; Nxy and
Mx; My; Mxy are the stress resultants and bending moments; q is
the lateral distributed load applied on the laminates; Aij; Bij and
Dij are, respectively, the extensional, coupling and bending stiff-
nesses [21].

If the coupling stiffness Bij is non-zero, which usually occurred
in unsymmetric laminates, the plates will be stretched as well as
bent even under pure in-plane forces or pure bending moments.
Due to the coupling effects, the coupled stretching–bending analy-
sis becomes much more complicated than the two-dimensional
analysis and the plate bending analysis. An elegant and powerful
complex variable method called Stroh-like formalism was
developed to deal with this kind of problems. With this formalism,
a general solution satisfying all the basic Eqs. (2.1a–d) with q = 0
can be expressed as [1,22]
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in which Re denotes the real part of a complex number; lk and
ðak;bkÞ; k ¼ 1;2;3;4 are, respectively, the material eigenvalues and
material eigenvectors related to extensional, coupling and bending
stiffnesses; f kðzkÞ; k ¼ 1;2;3;4, are the analytical complex function
determined by the boundary conditions set for the problem. In
Eq. (2.2c), u1 and u2 are the mid-plane displacements u0 and
v0; b1 ¼ �@w=@x; b2 ¼ �@w=@y, are the negative slopes in x and y
directions; /1 and /2 are the stress functions related to the
in-plane forces Nij, and w1 and w2 are the stress functions related
to the bending moments Mij, transverse shear forces Qi and effective
transverse shear forces Vi. Their relations are

N11 ¼ �/1;2; N22 ¼ /2;1; N12 ¼ /1;1 ¼ �/2;2 ¼ N21;

M11 ¼ �w1;2; M22 ¼ w2;1; M12 ¼ w1;1 � g ¼ �w2;2 þ g ¼ M21;

Q 1 ¼ �g;2; Q 2 ¼ g;1; g ¼ ðw1;1 þ w2;2Þ=2;

V1 ¼ �w2;22; V2 ¼ w1;11

ð2:3Þ

in which the subscript �;i; i ¼ 1;2 denotes differentiation with
respect to xi.

2.1. Green’s function for laminates

Consider an infinite laminate subjected to a concentrated force

f̂ ¼ ðf̂ 1; f̂ 2; f̂ 3Þ and moment m̂ ¼ ðm̂1; m̂2; m̂3Þ at point x̂ ¼ ðx̂1; x̂2Þ
(see Fig. 1). The solution to this problem, which is usually called
Green’s function, has been obtained by using the Stroh-like formal-
ism and can be written in the form of (2.2a) in which the complex
function vector fðzÞ is [23]
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