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a b s t r a c t

An analytical, closed form solution is developed for balanced (not necessarily symmetric) laminates sub-
jected to flexural deformation. The analytical solution provides spatial distribution of displacements and
curvature, from which in-plane and intralaminar strains and stresses are obtained through differentiation
and constitutive equations. The deformation is shown to consist of a homogeneous deformation plus per-
turbations near the crack tip. A methodology is proposed to separate the perturbation from the homoge-
neous deformation, to eliminate ill-conditioning of the eigenvalue/eigenvector problems that occurs
otherwise. It is shown that, while the homogeneous deformation provides a macroscopic measure of
damage in terms of reduced flexural stiffness of the laminate, the perturbation solution provides a
detailed account of the intralaminar shear induced near the crack, which is used to calculate the extent
of shear lag and the maximum intralaminar shear stress. The intact portion of the laminate is modeled
without lumping it into a single equivalent lamina. Furthermore, laminas can be subdivided into multiple
sub-laminates to increase the accuracy of the representation of intralaminar/interlaminar shear, which is
shown to improve the predicted value of maximum interlaminar shear stress, which in turn is important
for the prediction of matrix-crack induced delamination.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Intralaminar matrix cracking is the first mode of damage in
polymer-matrix laminated composites subjected to quasi-static,
fatigue, and impact load. Matrix cracking increases the permeabil-
ity of the laminate leading to gas/liquid leakage and facilitates
access to contaminants that may degrade the fibers. Also, matrix
cracking often precedes catastrophic modes of damage such as
delamination, and fatigue life reduction. Furthermore, stiffness
reduction of cracking laminas leads to stress redistribution to other
laminas that may as a result fail in a catastrophic, fiber dominated
mode. Therefore, prediction of damage initiation and evolution is
an important ingredient of laminate failure prediction [1].

Matrix cracks are caused by a combination of transverse tensile
and in-plane shear strain. Under these conditions, preexisting
defects grow into cracks when the energy release rate exceeds
the intralaminar fracture toughness of the lamina. Assuming linear
elastic fracture mechanics [2] and periodicity leads to predictive
methods that require the minimum number of material properties
while achieving good comparisons with available experimental

data. These solutions are either approximate, e.g., [3–7] or numer-
ical, e.g., [8–11]. More refined methods require adjustable param-
eters, for example in the form of empirical hardening laws
[12,13], and combinations of fracture and strength properties, for
example [14].

The vast majority of analytical and semi-analytical solutions are
restricted to symmetric laminates subjected to membrane loads
only, and only matrix cracks are considered for the calculation of
interlaminar stresses. To account for interaction between intralam-
inar cracks and delaminations, more complex numerical models
such as reported in [15] are needed. Furthermore, most analytical
and semi-analytical solutions assume either linear [16] or
bi-linear [17] distribution of interlaminar stress through the
undamaged sublaminates. Such limitation is removed in this work
by subdividing each undamaged lamina into a sublaminate with as
many layers as needed to achieve convergence in the value of the
maximum interlaminar stress.

Matrix cracking of laminates subject to flexural deformation are
analyzed in [18,19] using a clever analogy between laminates and
orthotropic media. Such methodology was generalized in [20], but
it relies on an ‘‘a priori” parametric study via finite element analy-
sis (FEA) that restricts its applicability to those material systems
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included in the FEA study. A 1D beam bending model for ½0=90�S-
like laminates where only one of the 90� laminas is allowed to
crack is offered in [21,22]. The finite strip solution in [23–25] relies
on the generalized plane strain assumption.

Both approximate and numerical solutions require either exper-
iments or analytical solutions to validate them. Experiments are
limited to a few laminate configurations and they are further lim-
ited in what can be measured. For example, stiffness reduction of
carbon fiber laminates is very difficult to measure. Therefore, ana-
lytical solutions are desirable because they can be used as bench-
marks, even if they are limited in scope of applicability to say,
plane stress, and/or impose restrictions on the type of material
behavior, such as say, elastically linear/damaging behavior.

In this work, a closed form, analytical solution is developed for
balanced (not necessarily symmetric) laminates subjected to
bending. Plane stress through the thickness and along one of the
in-plane directions is assumed to reduce the problem to one
dimension. The analytical solution provides spatial distribution of
displacements and curvature, from which in-plane and intralami-
nar strains are obtained through differentiation, and stresses
through constitutive equations. The solution is expressed as a com-
bination of a fundamental solution and perturbation functions to
represent the perturbation of the stress/strain field near the cracks.
In this way, the near singularity of displacement-only solutions is
removed. Furthermore, the perturbation terms lead naturally to
computation of intralaminar/interlaminar stresses.

2. Approximations

The development of a closed form, analytical solution for bend-
ing of laminates with matrix cracks requires a number of approx-
imations to reduce the 3D problem to 1D. These approximations
are described as follows.

2.1. Fracture mechanics

Consider a thin, balanced laminate, with N laminas, subjected to
bending load Mx only. All laminas are of the same material but ori-
ented with respect to the x-axis in a laminate stacking sequence
(LSS) such as ½0m=90n=� hr �S, where h < 45�. Experimental evi-
dence [26–33] indicate that in such laminates, the transverse lam-
inas develop cracks as soon as the energy release rate in mode-I
fracture GI exceeds the intralaminar fracture toughness of the
material GIc . Cracks start at defects within the transverse layer
(90n layer). Their propagation through the thickness of the ply is
unstable [34, Section 7.2.1], reaching the interface suddenly. Upon
further increase in applied load Mx or curvature jx, the thickness
cracks grow again unstably parallel to the fiber direction, as illus-
trated in Fig. 1.

When subjected to bending deformation, only the laminas
experiencing tensile stress may develop matrix cracks parallel to

the fiber direction. If the cracked lamina spans across the midsur-
face, the thickness crack develops on the tensile side only. In this
case, the transverse lamina is divided into two laminas, one
cracked (tensile side) and another one virgin (compression side).

Initially, cracks are not equally spaced but they become so as
the crack density increases [35]. It is therefore possible to assume
equally spaced cracks, which allows us to assume periodicity, and
thus identify and use a representative volume element (RVE) to
analyze this problem efficiently. The RVE encompasses the
thickness of the laminate, a unit length along the fiber direction
of the cracking lamina, and the arc length 2‘ between existing
cracks. The crack density in each lamina, denoted by subscript i,
is defined as

ki ¼ 1=2‘ ð1Þ
The analysis assumes that a very small crack density exists in

the material, which may be justified as being representative of ini-
tial defects. An initial value ki ¼ 0:01 mm�1 is used in the exam-
ples. New cracks are assumed to appear halfway between
existing cracks, that is, as far as possible from the shear lag regions
near existing cracks. The coordinate system for the RVE has its ori-
gin halfway between existing cracks, as shown in Fig. 1.

2.2. Plate kinematics

In this work, general laminates, such as ½0m=90n=� hr�, not nec-
essarily symmetric, can be analyzed. Even if the undamaged
(intact) laminate is initially symmetric, it will become unsymmet-
ric when it cracks on the tensile side of the midsurface. Further-
more, bending deformation is antisymmetric with respect to the
midsurface, with positive (negative) deformation above (below)
the midsurface. In summary, due to antisymmetry of deformation
and material properties with respect to the mid-surface of the lam-
inate, all the laminate (with N laminas) needs to be analyzed. The
following approximations are made:

I. Lines initially straight and normal to the mid-surface remain
incompressible: �z ’ 0

II. A state of plane stress is assumed in the thickness direction,
i.e., ri

z ¼ 0
III. Due to intralaminar damage, a high order kinematics is

needed to represent the beam deformation, and
consequently lines initially straight and normal to the
mid-surface are no longer straight and normal to the
mid-surface. Furthermore, the deflection w0 and the rotation
/0

x are not zero. Since the laminate is balanced, the deforma-
tion is symmetric with respect to the y—z plane (Fig. 1),
and no bending is applied in the y-direction (My ¼ 0), the
intralaminar shear strain for each lamina can be written
as the deviation from the average laminate rotation, as
follows

cixz ¼
@ui

@z
� /0

x ð2Þ

where uiðx; zÞ is the in-plane displacement of the i-lamina.
IV. In order to reduce the problem to 2D, a state of plane stress

is assumed in the y-direction, i.e., ri
y ¼ 0.

V. For a general laminate such as ½0m=90n=� hr �, the coupling
terms D16 and D26 may be different from zero, but these
terms decrease rapidly with increasing r. Therefore, each
pair ð�hÞ is treated as an equivalent lamina without coupling
(Q16 ¼ Q26 ¼ 0) and therefore D16 ¼ D26 ¼ 0 and cixy ¼ 0.

VI. Since cracks appear equally spaced on both sides of the y—z
plane (Fig. 1), the domain is symmetric with respect to the
y—z plane and ciyz ¼ 0.

Fig. 1. Representative Volume Element (RVE) with dimensions 2‘� 1� 2h, where
2h is the thickness of the laminate, and A, B, represent balanced sub-laminates.
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