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a b s t r a c t

A size-dependent bending model of an electro-elastic bilayer nanobeam including an isotropic dielectric
layer and an elastic layer is established based on the flexoelectricity theory and the strain gradient theory.
The governing equations and boundary conditions are derived from electric enthalpy variation principle
with consideration of electrostatic force. The static bending problems of bilayer cantilever under closed
and open circuit conditions are solved to show the size-dependency of the flexoelectric effect in both
direct and converse flexoelectric processes. Numerical results demonstrate that both the strain gradient
elastic effect and the flexoelectric effect significantly influence the deflection of the bending cantilever
when the beam thickness is comparable to the material length scale parameters. Due to the flexoelectric-
ity, sharp gradients of the electric field and polarization field arise near the surfaces, which differs greatly
from the uniform field in the classical theory. In addition, the electric potential generated in the direct
flexoelectric process and the deflection generated in the converse flexoelectric process exhibit obvious
size-dependency.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Flexoelectricity, the coupling between polarization and strain
gradients, is a universal effect allowed by symmetry in all dielec-
trics [1,2]. Since strain gradient is closely related to the character-
istic scale (thickness, radius, etc.) of structures, flexoelectricity has
increasing influence on the electrical and mechanical properties of
dielectrics with their structural size decreasing to nanometers. In
literatures, for example, flexoelectricity was found to play an
important role in the physical characteristics of ferroelectrics.
Catalan et.al [3] found that the flexoelectricity causes an order-
of–magnitude decrease in the dielectric constant of thin films.
Lubomirsky et.al [4] reported that the poling of quasi-amorphous
BaTiO3 upon cooling is assisted by flexoelectricity. Based on these
observations, flexoelectricity is believed to have a good application
potential in the engineering field.

Recently, flexoelectricity has stimulated a surge of scientific
interests in both experimental and theoretical investigations. Some
experiments have been successfully performed to estimate the
flexocoupling coefficients. For example, Cross and coworkers

[5–7] used the cantilever bending method and the pyramid-
compression method to measure the flexocoupling coefficient in
some certain perovskite ceramics. Zubko et al. [8,9] employed
the three-point bending method to measure the flexocoupling
coefficient in nonpiezoelectric SrTiO3 single crystals of different
crystallographic orientations. In these experiments, giant flexocou-
pling coefficients are found in some titanate material whose
dielectric constants are very high.

Besides, some theoretical studies have also been done to interpret
flexoelectricity in dielectrics. Kogan [10] formulated the first phe-
nomenological theory of flexoelectricity in 1964 and estimated the
value range of flexoelectric coefficients. Mindlin [11] introduced first
gradients of the polarization into the conventional linear electrome-
chanical coupling theory based on the long-wavelength limit of the
shell-model of lattice dynamics. Tagantsev [12] developed a micro-
scopic theory of ionic flexoelectricity based on a rigid-ion model.
The author verified that there are four mechanisms contributing to
the flexoelectric response: dynamic bulk flexoelectricity, static bulk
flexoelectricity, surface flexoelectricity and surface piezoelectricity.
The first steps towards a microscopic description of the electronic
contribution to flexoelectricity were made by Resta [13]. Sharma
et al. [14,15] developed a theory considering first gradients of the
strain and thepolarizationandanalyzed the size-dependentmechan-
ical and electrical behaviors of piezoelectric and nonpiezoelectric
nanostructures based on a combination of theoretical and atomistic
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approaches. Then a more comprehensive theory with consideration
of surface stress, surface polarization, bulk flexoelectric effect and
electrostatic force for elastic dielectrics was proposed by Shen and
Hu [16]. These theories have already been used to interpret or pre-
dict some size-dependent mechanical and electrical behaviors of
nanosized dielectric structures.

In literatures, flexoelectric effects on the mechanical and elec-
trical properties of specific nanosized structures have been ana-
lyzed based on these theories. Liang et al. [17] established a
Bernoulli–Euler dielectric nanobeam model with the strain gradi-
ent elastic effect and the flexoelectric effect. In their paper the
size-dependent mechanical behaviors of pure elastic, piezoelectric
and nonpiezoelectric dielectric cantilever beams were discussed.
Influence of the flexoelectric effect on the electroelastic and
dynamic responses of bending piezoelectric nanobeams under dif-
ferent boundary conditions was also investigated by Yan and Jiang
[18] based on Bernoulli–Euler beam model and Timoshenko beam
model. Zhang et al. [19] proved that flexoelectricity has significant
influence on the electroelastic responses and vibrational behaviors
of a piezoelectric nanoplate. These researches mainly targeted at
monolayer simple structures such as nanobeam and nanoplate.

Moreover, a bilayer or a multilayer structure is also widely used
in mems-electro-mechanical system (MEMS) and nano-electro-
mechanical system (NEMS) [20–23], such as a piezoelectric bi-
morph sensor [24]. Several analyses about the effect of flexoelec-
tricity on bilayer or multilayer dielectric structures could be found.
Sharma et al. [25] proved the possibility of creating apparently
piezoelectric multilayer thin films by only symmetrically stacking
various nonpiezoelectric dielectric materials with different dielec-
tric constant. When the multilayer structure is subjected to a pres-
sure, the large strain gradients induced near the interfaces will
generate a net polarization. Chen and Soh [26] investigated the
flexoelectric effects on the distributions of polarization in multifer-
roic electro-magnetic thin bilayer films. They found that the flexo-
electric induced polarization became more and more dominant
with the film thickness decreases. Li et al. [27] analyzed a three-
layer beam structure including an isotropic dielectric layer, an
electrode layer and an elastic substrate layer based on the
extended linear piezoelectricity theory proposed by Hadjesfandiari
[28]. Their analysis demonstrated that the size-dependent flexo-
electricity significantly affects the static and dynamic behaviors
of the three-layer bending beam. Besides, for bilayer or multilayer
nanosized structures, the strain gradient elastic effect may play a
key role in its mechanical properties. Such an effect on the compos-
ite structures has been widely investigated especially in recent
years [29–33]. Analogous to the bilayer piezoelectric intelligent
structure, a bilayer flexoelectric dielectric structure (including an
isotropic dielectric layer and an elastic layer) may also possess
exciting electrical and mechanical properties and have the possi-
bility of the application in engineering. However, the investigation
and application of such an electro-elastic bilayer structure is still
absent. Further exploration of the flexoelectricity and strain gradi-
ent effect in such bilayer structures is necessary. This paper aims at
performing some theoretical analyses of the flexoelectricity and
strain gradient effect in nanosized bilayer flexoelectric beams.

In the present analysis, a size-dependent bending model of a
bilayer flexoelectric dielectric nanobeam is proposed based on
the Bernoulli–Euler beam model and the flexoelectricity theory
with consideration of the effects of strain gradients and
polarization gradients. The details are as follows: in Section 2,
some basic equations in flexoelectric theory are given; in Section 3,
the governing equations and boundary conditions of a bilayer
flexoelectric dielectric nanobeam are derived; in Section 4, static
bending problems of the bilayer cantilever under closed and open
circuit conditions are solved. The new model can be used to
illustrate the size-dependent flexoelectricity of a bilayer dielectric

cantilever; in Section 5, numerical results are given to discuss the
influence of strain gradient and flexoelectric effects on the
mechanical and electrical properties. Finally, main conclusions
for this paper are summarized in Section 6.

2. Basic equations in flexoelectric theory

For an extended linear theory of centrosymmetric dielectrics,
the expression for the internal energy density U incorporating first
gradients of the deformation gradient and the polarization is given
in [34]. Another form of the internal energy density incorporating
first gradients of the strain and the polarization can be written as

U ¼1
2
aklPkPl þ 1

2
cijkleijekl þ 1

2
bijklPi;jPk;l þ f ijklPigjkl

þ dijklPi;jekl þ 1
2
gijklmngijkglmn; ð1Þ

where a and c are the second-order reciprocal dielectric susceptibil-
ity and fourth-order elastic constant tensors, respectively. d and f
are the flexocoupling coefficient tensors, and it was justified that
d = �f [16,35]. The tensor g represents strain gradient elastic effect.
The summation convention is used in this paper, and the comma in
the subscript indicates differentiation with respect to the spatial
variables. P denotes the polarization vector. e and g are the strain
and strain gradient tensors, respectively, which are defined as,

eij ¼ 1
2
ðui;j þ uj;iÞ;gijk ¼ eij;k ¼ 1

2
ðui;jk þ uj;ikÞ: ð2Þ

Here u represents the displacement vector.
The electric enthalpy density is defined by Toupin [36] as

H ¼ U � 1
2
e0u;iu;i þu;iPi; ð3Þ

where e0 is the permittivity of vacuum and u is the electric potential
of the Maxwell self-field (MS) defined by

EMS
i ¼ �u;i: ð4Þ
The constitutive equations are expressed in terms of the inter-

nal energy as

rij ¼ @U
@eij

¼ cijklekl þ dijklPi;j; ð5Þ

sijk ¼ @U
@gijk

¼ f ijklPi þ gijklmnglmn; ð6Þ

Ei ¼ @U
@Pi

¼ aijPj þ f ijklgjkl; ð7Þ

Xij ¼ @U
@Pi;j

¼ bijklPk;l þ dijklekl: ð8Þ

In the above equations, r is the classical Cauchy Stress tensor, s
is the high-order stress tensor, E is the effective local electric field
vector, X is the high-order local electric field. For an isotropic
dielectric, the symmetries of the material constants introduced in
Eq. (1) are as follows [34],

aij ¼ adij; cijkl ¼ c12dkl þ c44ðdikdjl þ dildjkÞ
bijkl ¼ b12dkl þ b44ðdikdjl þ dildjkÞ þ b77ðdikdjl � dildjkÞ
dijkl ¼ d12dkl þ d44ðdikdjl þ dildjkÞ
f ijkl ¼ f 12dkl þ f 44ðdikdjl þ dildjkÞ

8>>><
>>>:

: ð9Þ

The coefficient tensor g corresponds to the adopted strain gra-
dient elastic theory. The differences/similarities of various strain
gradient theories have been investigated by Zhang and Sharma
[37]. In this paper, the theory proposed by Kleinert and Gauge
[38] is used. For an isotropic material, the elements of the coeffi-
cient tensor g can be derived as
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