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a b s t r a c t

This paper presents a theoretical investigation in free vibration of a functionally graded beam which has
variable material properties along the beam length and thickness. It is assumed that material properties
vary through the length according to a simple power law distribution with an arbitrary power index and
have an exponential gradation along the beam thickness. The characteristic equations are derived in
closed form. The governing equation can analytically reduce to the classical forms of Euler–Bernoulli
beams if the gradient index disappears. Analytical solutions of the natural frequencies are obtained for
graded beams with clamped-free and hinged–hinged end supports. Results show that the variations of
material properties in the beam length and thickness have a strong influence on the natural frequencies.
It is also shown that there exists a critical frequency depending on the gradient parameter. The natural
frequencies have an abrupt jump when across its critical frequencies. The derived results can be useful
for designing non-homogeneous beams which may be required to vibrate with a particular frequency.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded (FG) materials are one class of non-
homogeneous materials with a gradual transition between two
or more phases, which are used in many civil, mechanical and
aerospace engineering structures. As the use of FG materials
increases, FG materials may be fabricated into various structures
including beams [1,2], plates [3], microshells [4], nanobeams [5]
and so on. For FG beams, a review of the literature reveals that
the previous works have consider the gradation of the material
properties in the thickness direction or in the axial direction.

For FG beams or plates with the gradation of the material prop-
erties in the thickness direction, there have been a large number of
researches devoted to stress, deformation, stability and vibration
[5–26]. Akgoz and Civalek [5] used implementing the minimum
total potential energy principle and Navier solution procedure to
present a shear deformation beam model for FG microbeams with
new shear correction factors. Aydin [6] studied free vibration of FG
beams with exponential gradation along the beam thickness.
Giunta et al. [7] conducted free vibration analysis of FG beams with
a power law gradation on the cross-section by hierarchical theo-
ries. Li et al. [8] used classical and first-order shear deformation
beam theories to investigate free vibration of FG beams. Li et al.
[9] presented a size-dependent FG piezoelectric beam model by a
variational formulation. Liu and Shu [10] developed an analytical

solution to study the free vibration of exponential FG beams with
a single delamination. Li presented [11] a new unified approach
to study the static and dynamic behaviors of FG beams with the
rotary inertia and shear deformation included. Mahi et al. [12] pre-
sented an analytical method to study the free vibration of symmet-
ric FG beams. Mohanty et al. [13] used finite element method to
studied the dynamic stability of FG beams and FG sandwich beams.
Pandey and Pradyumna presented [14] a layerwise finite element
formulation to investigate free vibration of FG sandwich plates in
thermal environment. Sankar and Tzeng [15] obtained exact
solutions for thermal stress distributions in a FG beam with an
exponential variation of material properties through the thickness.
Simsek and Kocaturk [16] investigated free vibration characteris-
tics and the dynamic behavior of a FG simply supported beam
under a concentrated moving harmonic load. Sina et al. [17]
presented a new beam theory different from the traditional first-
order shear deformation beam theory to analyze free vibration of
FG beams. Trung-Kien et al. [18] proposed a new higher-order
shear deformation theory to study buckling and free vibration
analysis of isotropic and FG sandwich beams. Wei et al. [19] pro-
posed an analytical method to study free vibration behiviors of
FG beams with edge cracks. Yang et al. [20] used a meshfree
boundary domain integral equation method to investigate free
vibration of the FG sandwich beams. Anandrao et al. [21] investi-
gated free vibration of FG beams with various classical boundary
conditions by two separate finite element formulations. One based
on Euler–Bernoulli beam theory and the other based on
Timoshenko beam theory are developed. Asghari [22] presented a
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size-dependent formulation for Timoshenko beams made of a
functionally graded material. Except the above studies, the fracture
behavior of FG structures was investigated by using the extended
finite element method [23–26].

For axially FG beams, the similar problem becomes more
complicated because of the governing differential equation with
variable coefficients. So far, a relatively few researchers have
considered the gradation of the material properties in the axial
direction [27–33]. Alshorbagy et al. [27] used numerical finite ele-
ment method to study the dynamic characteristics of functionally
graded beam with material graduation in the axial direction based
on the power law. Huang and Li [28] presented a novel and simple
approach to solve natural frequencies of free vibration of an axially
graded and non-uniform beam. Sarkar and Ganguli [29] studied the
free vibration of axially FG Timoshenko beams with polynomial
gradation of the material mass density, elastic modulus and shear
modulus, along the length of the beam. Shahba and Rajasekaran
[30] studied the free vibration and stability of axially FG tapered
Euler Bernoulli beams through solving the governing differential
equations of motion. S�ims�ek et al. [31] used Euler Bernoulli beam
theory to investigate linear dynamic behavior of an axially FG
beam with simply supported edges. Li et al. [32] studied free vibra-
tion of exponentially FG beams and obtained exact frequency
equations of the free vibration problem. Kukla and Rychlewska
[33] studied free vibration of axially FG beams consisting of two
segments.

The previous works focused on the dynamic characteristics of
FG beams with material graduation in the length direction (as
shown in Fig. 1(a)) or in the thickness direction (as shown in
Fig. 1(b)). However, there are practical occasions which require
the materials graded in two or three directions. So, it is necessary
to develop appropriate methods to investigate the dynamic behav-
iors of multi-directional functionally graded structures. But, due to
the complexity of the problem caused by the multi-directional
inhomogeneity, it is difficult to obtain the exact solution. Nie
et al. [34] used a semi-analytical numerical method to study the
dynamic behavior of multi-directional functionally graded annular
plates. The objective of this paper is to present an analytical
method to investigate the free vibration of FG beams with the
gradation of the material properties along the beam length and
thickness (as shown in Fig. 1(c)). First, based on Euler–Bernoulli
beam theory, the vibration problem of FG beams is turned into a

governing differential equation. Second, the natural frequencies
and mode shapes can be determined by solving the governing
differential equation. Finally, the influences of material gradation
parameters on vibration characteristics of FG beams are investi-
gated in detail.

2. Mathematical formulations

2.1. Governing differential equation

Consider a straight and uniform cross-section FG beam with the
length l, the width b, the depth h, and a rectangular cross section
(see Fig. 2). It is assumed that the material properties vary contin-
uously along the length and thickness direction. In the present
work, Young’s modulus E and mass density q are assumed to vary
in the x- and z-direction according to the following expressions

E ¼ E0 expðbxÞf ðzÞ q ¼ q0 expðbxÞgðzÞ ð1Þ
where E0 and q0 are constants of Young’s modulus and mass
density, respectively. b is a constant characterizing the gradual
variation of the material properties along x-direction. f(z) and g(z)
are the functions of variable z.

According to Euler–Bernoulli beam theory, the following
assumptions are made: (1) All the cross-section of FG beams remain
plane after deformation. However, they can undergo a rigid body
displacement in x–z plane and also a rotation about y-axis. (2)
The effects of rotary inertia and shear deformation in x–z plane
can be ignored. (3) The angle of rotation is small so that the small
angle assumption can be used.

Based on these assumptions, the axial and the bending rotation
displacement fields are respectively given as

u ¼ �hz ð2Þ

h ¼ @wðx; tÞ
@x

ð3Þ

where x and z are the spatial coordinates as shown in Fig. 2, t is
time, w is the transverse displacement.

Considering the small deformations and assuming the material
of FG beams obeys Hooke’s law, the strains and stresses in the
beam are respectively obtained using Eqs. (1) and (2) as,

ex ¼ @u
@x

¼ �z
@2wðx; tÞ

@2x
ð4Þ

rx ¼ Eex ¼ �Ez
@2wðx; tÞ

@2x
¼ �E0 expðbxÞf ðzÞz @

2wðx; tÞ
@2x

ð5Þ

According to Eq. (5), the bending moment M is given by

M ¼ b
Z z0

z0�h
rxzdz ¼ �DE0 expðbxÞ @

2wðx; tÞ
@2x

ð6Þ

(a)

(b)

(c)

Fig. 1. Schematic of functionally graded beams: (a) an axially graded beam, (b) a
thickness graded beam and (c) a two-directional graded beam.
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Fig. 2. Schematic of FG beam.
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